Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bug: stable diffusion example failed to run #1165

Closed
xieydd opened this issue Nov 7, 2022 · 10 comments
Closed

bug: stable diffusion example failed to run #1165

xieydd opened this issue Nov 7, 2022 · 10 comments

Comments

@xieydd
Copy link
Member

xieydd commented Nov 7, 2022

Description

I have try this demo , but looks like some image is not found.

envd file:

def build():
    base(os="ubuntu20.04", language="python")
    #config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages([
        "torch",
        "transformers",
        "diffusers",
    ])

The detail log :

v0.10.3: Pulling from moby/buildkit
59bf1c3509f3: Already exists
cebf54714d9e: Pull complete
0b2c85935cbb: Pull complete
bb8c60c7d403: Pull complete
Digest: sha256:0dc312b04eac1b44cd2cad566deb1e886c753109208affbbec8384f381ff7f38
Status: Downloaded newer image for moby/buildkit:v0.10.3
[+] ⌚ parse build.envd and download/cache dependencies 0.0s ✅ (finished)
[+] build envd environment 1173.6s (40/40) FINISHED
 => importing cache manifest from docker.io/tensorchord/python-cache:envd-v0.2.5-alpha.2                                          8.6s
 => docker-image://docker.io/library/ubuntu:20.04                                                                                 8.6s
 => => resolve docker.io/library/ubuntu:20.04                                                                                     8.6s
 => docker-image://docker.io/tensorchord/horust:v0.1.0                                                                            8.6s
 => => resolve docker.io/tensorchord/horust:v0.1.0                                                                                8.6s
 => docker-image://docker.io/tensorchord/envd-sshd-from-scratch:v0.2.5-alpha.2                                                    8.6s
 => => resolve docker.io/tensorchord/envd-sshd-from-scratch:v0.2.5-alpha.2                                                        8.6s
 => CACHED [internal] install built-in packages                                                                                   0.0s
 => CACHED [internal] create conda directory                                                                                      0.0s
 => CACHED [internal] install conda                                                                                               0.0s
 => CACHED [internal] install horust                                                                                              0.0s
 => CACHED mkdir /etc/horust/services                                                                                             0.0s
 => CACHED mkdir /var/log/horust                                                                                                  0.0s
 => CACHED [internal] add envd-sshd from tensorchord/envd-sshd-from-scratch:v0.2.5-alpha.2                                        0.0s
 => [internal] create user group envd                                                                                           135.7s
 => => sha256:bb612f7d1b41fcf22253a4579506d2f560d7f3e49952bada08227ff87763f252 639B / 639B                                        0.7s
 => => sha256:acafdb8c9ac9f6887a90766700c812dba00630a156355e2ad2477dbfe1cba25c 3.24MB / 3.24MB                                    9.8s
 => => sha256:27fc7881ac6c6b58ffc37af86a1911d367157218a0356050c858866e875acdff 147B / 147B                                        2.7s
 => => sha256:98e38b07830150d715c574c3f506f8e336c4f4b69ece5c406a2e1156afd0054f 143B / 143B                                        2.7s
 => => sha256:8632dca06c7933257e47b3177ca36ebf1c01eacabac84b8b04651ebdfd06dfa4 2.06MB / 2.06MB                                    6.1s
 => => sha256:98be348627b5625a20cd4b98ea55925c740e1b79d47a1ab94936690f6659b7c0 58.96MB / 58.96MB                                107.0s
 => => sha256:b78a47138b912e3f989dbc33f472821fe284de16e7123754f4cbd5cbb6ba4f0c 121B / 121B                                        1.0s
 => => sha256:e7e41ebb053c87bf873ece53729851d731005a12373f118d0e540d3d5ab53240 94.35MB / 94.35MB                                120.5s
 => => sha256:eaead16dc43bb8811d4ff450935d607f9ba4baffda4fc110cc402fa43f601d83 28.58MB / 28.58MB                                 62.8s
 => => extracting sha256:eaead16dc43bb8811d4ff450935d607f9ba4baffda4fc110cc402fa43f601d83                                         2.2s
 => => extracting sha256:e7e41ebb053c87bf873ece53729851d731005a12373f118d0e540d3d5ab53240                                         6.1s
 => => extracting sha256:b78a47138b912e3f989dbc33f472821fe284de16e7123754f4cbd5cbb6ba4f0c                                         0.0s
 => => extracting sha256:98be348627b5625a20cd4b98ea55925c740e1b79d47a1ab94936690f6659b7c0                                         4.9s
 => => extracting sha256:8632dca06c7933257e47b3177ca36ebf1c01eacabac84b8b04651ebdfd06dfa4                                         0.1s
 => => extracting sha256:98e38b07830150d715c574c3f506f8e336c4f4b69ece5c406a2e1156afd0054f                                         0.0s
 => => extracting sha256:27fc7881ac6c6b58ffc37af86a1911d367157218a0356050c858866e875acdff                                         0.0s
 => => extracting sha256:acafdb8c9ac9f6887a90766700c812dba00630a156355e2ad2477dbfe1cba25c                                         0.1s
 => => extracting sha256:bb612f7d1b41fcf22253a4579506d2f560d7f3e49952bada08227ff87763f252                                         0.0s
 => [internal] create user envd                                                                                                   1.7s
 => [internal] add user envd to sudoers                                                                                           0.2s
 => [internal] mkdir config and cache dir                                                                                         0.1s
 => [internal] initialize conda bash environment                                                                                  0.4s
 => [internal] install system packages                                                                                            0.0s
 => [internal] add conda environment to bashrc                                                                                    0.2s
 => [internal] configure shell bash                                                                                               0.0s
 => [internal] create conda environment: bash -c "/opt/conda/bin/conda create -n envd python=3.9"                                45.0s
 => [internal] conda python environment                                                                                           0.2s
 => pre-python stage                                                                                                              6.2s
 => => merging                                                                                                                    6.2s
 => [internal] install conda packages                                                                                             0.0s
 => [internal] create cache dir                                                                                                   0.2s
 => [internal] create dir for ssh key                                                                                             0.1s
 => [internal] install ssh keys                                                                                                   0.0s
 => [internal] install ssh key                                                                                                    0.0s
 => [internal] setting pip cache mount permissions                                                                                0.0s
 => pip install torch transformers diffusers                                                                                    598.9s
 => [internal] install PyPI packages                                                                                              0.4s
 => [internal] generating the image                                                                                              12.2s
 => => merging                                                                                                                   12.2s
 => [internal] update alternative python to envd                                                                                  0.4s
 => [internal] update alternative python3 to envd                                                                                 0.1s
 => [internal] update alternative pip to envd                                                                                     0.1s
 => [internal] update alternative pip3 to envd                                                                                    0.1s
 => [internal] creating config dir                                                                                                0.0s
 => [internal] setting prompt starship config                                                                                     0.0s
 => [internal] setting prompt bash config                                                                                         0.1s
 => [internal] create file /etc/horust/services/sshd.toml                                                                         0.0s
 => exporting to oci image format                                                                                               362.5s
 => => exporting layers                                                                                                         162.7s
 => => exporting manifest sha256:263187a91c0b1de29cfa0abee2ddd0bae788aee227b28e699c94a8bd9f9024a8                                 0.0s
 => => exporting config sha256:aed4367652753b1b3b24a2c3b533a7dfe7f8a3191e84696d966f8b2267091be1                                   0.0s
 => => sending tarball                                                                                                          199.8s
error: No such image: stable-diffusion:dev

Reproduction

I jsut follow this demo , blocking in envd up.

Additional Info

  1. envd env
envd: v0.2.5-alpha.2
  BuildDate: 2022-11-03T13:12:35Z
  GitCommit: 46d24fd1331b1b0e223cb2d2223e17d648080bf1
  GitTreeState: clean
  GitTag: v0.2.5-alpha.2
  GoVersion: go1.18.7
  Compiler: gc
  Platform: darwin/amd64
  1. dev env
Darwin CHRISYDXIE-MB2 20.6.0 Darwin Kernel Version 20.6.0: Wed Jun 23 00:26:31 PDT 2021; root:xnu-7195.141.2~5/RELEASE_X86_64 x86_64

 active environment : envd
    active env location : /Users/xieydd/opt/anaconda3/envs/envd
            shell level : 2
       user config file : /Users/xieydd/.condarc
 populated config files : /Users/xieydd/.condarc
          conda version : 22.9.0
    conda-build version : 3.22.0
         python version : 3.9.13.final.0
       virtual packages : __osx=10.16=0
                          __unix=0=0
                          __archspec=1=x86_64
       base environment : /Users/xieydd/opt/anaconda3  (writable)
      conda av data dir : /Users/xieydd/opt/anaconda3/etc/conda
  conda av metadata url : None
           channel URLs : https://repo.anaconda.com/pkgs/main/osx-64
                          https://repo.anaconda.com/pkgs/main/noarch
                          https://repo.anaconda.com/pkgs/r/osx-64
                          https://repo.anaconda.com/pkgs/r/noarch
          package cache : /Users/xieydd/opt/anaconda3/pkgs
                          /Users/xieydd/.conda/pkgs
       envs directories : /Users/xieydd/opt/anaconda3/envs
                          /Users/xieydd/.conda/envs
               platform : osx-64
             user-agent : conda/22.9.0 requests/2.28.1 CPython/3.9.13 Darwin/20.6.0 OSX/10.16
                UID:GID : 501:20
             netrc file : None
           offline mode : False

Message from the maintainers:

Impacted by this bug? Give it a 👍. We prioritise the issues with the most 👍.

@kemingy
Copy link
Member

kemingy commented Nov 7, 2022

I'm not able to reproduce this error on Linux. I guess it's related to the disk space. Can you check if Docker Desktop (or something else you're using) has enough disk spaces?

@xieydd
Copy link
Member Author

xieydd commented Nov 7, 2022

Awesome, i found the storage resource limit of docker is 120 GB , and now 119.8 GB used.

Does we need pre check the resource? @kemingy

@kemingy
Copy link
Member

kemingy commented Nov 7, 2022

Awesome, i found the storage resource limit of docker is 120 GB , and now 119.8 GB used.

Does we need pre check the resource? @kemingy

Yeah, we can do that and make the error message more friendly.

@xieydd
Copy link
Member Author

xieydd commented Nov 7, 2022

@gaocegege
I think it is necessary to update the aigc blog, some code is not useful.
Can you reproduce it again?

@gaocegege
Copy link
Member

@gaocegege I think it is necessary to update the aigc blog, some code is not useful. Can you reproduce it again?

Could you please show the err log?

@xieydd
Copy link
Member Author

xieydd commented Nov 8, 2022

I have fixed it via this doc, need change image = pipe(prompt, guidance_scale=7.5)["sample"][0] to image = pipe(prompt, guidance_scale=7.5).images[0].

I just tested in T4 cuda env, must use fp16 mode, here is my env and code:

def build():
    base(os="ubuntu20.04", language="python")
    #config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.cuda(version="11.2.2", cudnn="8")
    install.python_packages([
        "torch",
        "transformers",
        "diffusers",
    ])
import random
import sys
import os

from diffusers import StableDiffusionPipeline
import torch
from torch import autocast

def dummy(images, **kwargs):
    return images, False

# Read prompt from command line
prompt = " ".join(sys.argv[1:])

model_id="CompVis/stable-diffusion-v1-4"

pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16",  use_auth_token=os.environ['HUGGINGFACE_TOKEN'])

pipe.to("cuda")
pipe.safety_checker = dummy

# Run for 10 samples
for i in range(10):
    n = random.randint(1000, 9999)
    with autocast("cuda"):
        image = pipe(prompt, guidance_scale=7.5).images[0]
    image.save(f'{n}.jpeg')
    if i==9:
        exit(0)

@gaocegege
Copy link
Member

@gaocegege
Copy link
Member

@gaocegege
Copy link
Member

SGTM. The API is updated. Let's update https://github.com/tensorchord/envd-docs/blob/main/docs-zh/blog/stable-diffusion-cpu.md

The blog post is already updated.

@gaocegege gaocegege added good first issue ❤️ Good for newcomers help wanted 🆘 Extra attention is needed labels Nov 8, 2022
@gaocegege gaocegege changed the title bug: envd up error bug: stable diffusion example failed to run Nov 8, 2022
@xieydd
Copy link
Member Author

xieydd commented Nov 8, 2022

Could you please help us fix the example? https://github.com/tensorchord/envd/blob/main/examples/stable-diffusion/main.py#L26

@xieydd

I will fix it.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
No open projects
Archived in project
Development

No branches or pull requests

3 participants