Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[r2.2:CherryPick] Fix input size used for batch normalization. #38440

Merged
merged 1 commit into from
Apr 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 49 additions & 0 deletions tensorflow/python/distribute/zero_batch_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
from absl.testing import parameterized
import numpy as np

from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from tensorflow.python.eager import backprop
Expand Down Expand Up @@ -158,5 +159,53 @@ def step_fn(inputs):
self.assertAllEqual(np.zeros(shape=(0, 4, 4, 3), dtype=np.float32),
test_step().numpy())

@combinations.generate(
combinations.combine(
distribution=[
strategy_combinations.one_device_strategy,
],
mode=["eager"],
fused=[True, False]))
def testBNWithDynamicBatchInputEager(self, distribution, fused):
distribution.extended.experimental_enable_get_next_as_optional = True
with distribution.scope():
# Explicitly create dataset with drop_remainder=False.
# This would make batch size unknown.
inputs = np.random.random((11, 4, 4, 3)).astype(np.float32) + 100
targets = np.random.random((11, 4, 4, 3)).astype(np.float32)
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)).batch(
10, drop_remainder=False).repeat()
dataset_iterator = iter(
distribution.experimental_distribute_dataset(dataset))

bn = normalization.BatchNormalization(
axis=-1, epsilon=1e-3, momentum=0.9, fused=fused)
optimizer = gradient_descent.GradientDescentOptimizer(0.01)

@def_function.function
def train_step(iterator):

def step_fn(inputs):
features, targets = inputs
with backprop.GradientTape() as tape:
outputs = bn(features, training=True)
loss = losses.mean_squared_error(targets, outputs)

grads = tape.gradient(loss, bn.variables)
optimizer.apply_gradients(zip(grads, bn.variables))
return loss

return distribution.run(step_fn, args=(next(iterator),))

for _ in range(100):
train_step(dataset_iterator).numpy()

# Verify that the statistics and weights are updated.
self.assertNotAllEqual(np.ndarray([0, 0, 0]), bn.moving_mean.numpy())
self.assertNotAllEqual(np.ndarray([1, 1, 1]), bn.moving_variance.numpy())
self.assertNotAllEqual(np.ndarray([1, 1, 1]), bn.gamma.numpy())
self.assertNotAllEqual(np.ndarray([0, 0, 0]), bn.beta.numpy())


if __name__ == "__main__":
test.main()
33 changes: 20 additions & 13 deletions tensorflow/python/keras/layers/normalization.py
Original file line number Diff line number Diff line change
Expand Up @@ -528,9 +528,11 @@ def _fused_batch_norm(self, inputs, training):
# TODO(b/129279393): Support zero batch input in non DistributionStrategy
# code as well.
if self._support_zero_size_input():
inputs_size = array_ops.size(inputs)
# Keras assumes that batch dimension is the first dimension for Batch
# Normalization.
input_batch_size = array_ops.shape(inputs)[0]
else:
inputs_size = None
input_batch_size = None

# TODO(rmlarsen): Support using fused avg updates for non-eager execution
# after fixing graph pattern matching and enabling fused_batch_norm to
Expand Down Expand Up @@ -591,10 +593,12 @@ def _fused_batch_norm_inference():
data_format=self._data_format)

train_op = _fused_batch_norm_training
if use_fused_avg_updates and inputs_size is not None:
train_op = lambda: tf_utils.smart_cond(inputs_size > 0,
if use_fused_avg_updates and input_batch_size is not None:
# pylint: disable=g-long-lambda
train_op = lambda: tf_utils.smart_cond(input_batch_size > 0,
_fused_batch_norm_training,
_fused_batch_norm_training_empty)
# pylint: enable=g-long-lambda

output, mean, variance = tf_utils.smart_cond(training, train_op,
_fused_batch_norm_inference)
Expand All @@ -615,15 +619,15 @@ def mean_update():
return self._assign_new_value(self.moving_mean, mean)
else:
return self._assign_moving_average(self.moving_mean, mean, momentum,
inputs_size)
input_batch_size)

def variance_update():
"""Update self.moving_variance with the most recent data point."""
if use_fused_avg_updates:
return self._assign_new_value(self.moving_variance, variance)
else:
return self._assign_moving_average(self.moving_variance, variance,
momentum, inputs_size)
momentum, input_batch_size)

self.add_update(mean_update)
self.add_update(variance_update)
Expand Down Expand Up @@ -697,9 +701,9 @@ def _moments(self, inputs, reduction_axes, keep_dims):
# TODO(b/129279393): Support zero batch input in non DistributionStrategy
# code as well.
if self._support_zero_size_input():
inputs_size = array_ops.size(inputs)
mean = array_ops.where(inputs_size > 0, mean, K.zeros_like(mean))
variance = array_ops.where(inputs_size > 0, variance,
input_batch_size = array_ops.shape(inputs)[0]
mean = array_ops.where(input_batch_size > 0, mean, K.zeros_like(mean))
variance = array_ops.where(input_batch_size > 0, variance,
K.zeros_like(variance))
return mean, variance

Expand Down Expand Up @@ -813,12 +817,15 @@ def _compose_transforms(scale, offset, then_scale, then_offset):
new_mean, new_variance = mean, variance

if self._support_zero_size_input():
inputs_size = array_ops.size(inputs)
# Keras assumes that batch dimension is the first dimension for Batch
# Normalization.
input_batch_size = array_ops.shape(inputs)[0]
else:
inputs_size = None
input_batch_size = None

if self.renorm:
r, d, new_mean, new_variance = self._renorm_correction_and_moments(
new_mean, new_variance, training, inputs_size)
new_mean, new_variance, training, input_batch_size)
# When training, the normalized values (say, x) will be transformed as
# x * gamma + beta without renorm, and (x * r + d) * gamma + beta
# = x * (r * gamma) + (d * gamma + beta) with renorm.
Expand All @@ -829,7 +836,7 @@ def _compose_transforms(scale, offset, then_scale, then_offset):
def _do_update(var, value):
"""Compute the updates for mean and variance."""
return self._assign_moving_average(var, value, self.momentum,
inputs_size)
input_batch_size)

def mean_update():
true_branch = lambda: _do_update(self.moving_mean, new_mean)
Expand Down