Skip to content

TheDatumOrg/kshape-matlab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

k-Shape: Efficient and Accurate Clustering of Time Series

k-Shape is a highly accurate and efficient unsupervised method for univariate and multivariate time-series clustering. k-Shape appeared at the ACM SIGMOD 2015 conference, where it was selected as one of the (2) best papers and received the inaugural 2015 ACM SIGMOD Research Highlight Award. An extended version appeared in the ACM TODS 2017 journal. Since then, k-Shape has achieved state-of-the-art performance in both univariate and multivariate time-series datasets (i.e., k-Shape is among the fastest and most accurate time-series clustering methods, ranked in the top positions of established benchmarks with 100+ datasets).

k-Shape has been widely adopted across scientific areas (e.g., computer science, social science, space science, engineering, econometrics, biology, neuroscience, and medicine), Fortune 100-500 enterprises (e.g., Exelon, Nokia, and many financial firms), and organizations such as the European Space Agency.

If you use k-Shape in your project or research, cite the following two papers:

References

"k-Shape: Efficient and Accurate Clustering of Time Series"
John Paparrizos and Luis Gravano
2015 ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 2015)

@inproceedings{paparrizos2015k,
  title={{k-Shape: Efficient and Accurate Clustering of Time Series}},
  author={Paparrizos, John and Gravano, Luis},
  booktitle={Proceedings of the 2015 ACM SIGMOD international conference on management of data},
  pages={1855--1870},
  year={2015}
}

"Fast and Accurate Time-Series Clustering"
John Paparrizos and Luis Gravano
ACM Transactions on Database Systems (ACM TODS 2017), volume 42(2), pages 1-49

@article{paparrizos2017fast,
  title={{Fast and Accurate Time-Series Clustering}},
  author={Paparrizos, John and Gravano, Luis},
  journal={ACM Transactions on Database Systems (ACM TODS)},
  volume={42},
  number={2},
  pages={1--49},
  year={2017}
}

Acknowledgements

We thank Teja Bogireddy for his valuable help on this repository.

k-Shape's Matlab Repository

This repository contains the Matlab implementation for k-Shape. For the Python version, check here.

Data

To ease reproducibility, we share our results over two established benchmarks:

  • The UCR Univariate Archive, which contains 128 univariate time-series datasets.
    • Download all 128 preprocessed datasets here.
  • The UAE Multivariate Archive, which contains 28 multivariate time-series datasets.
    • Download the first 14 preprocessed datasets here.
    • Download the remaining 14 preprocessed datasets here.

For the preprocessing steps check here.

Usage

Univariate Example

$ matlab
> Datasets = [cellstr('Coffee')]
> DS = LoadUCRdataset(char(Datasets(i)))
> [labels centroids] = kShape_univariate(DS.Data, length(DS.ClassNames));

Multivariate Example

$ matlab
> Datasets = [cellstr('ERing')]
> DS = LoadUAEdataset(char(Datasets(i)))
> [labels centroids] = kShape_multivariate(DS.Data, length(DS.ClassNames));

Check the Univariate and Multivariate code examples for benchmarking on the UCR and UAE datasets, respectively.

Results

The following tables contain the average Rand Index (RI), Adjusted Rand Index (ARI), and Normalized Mutual Information (NMI) accuracy values over 10 runs for k-Shape on the univariate and multivariate datasets.

Note: We collected the results using a single core implementation.

Server Specifications: Dual Intel(R) Xeon(R) Silver 4116 (24 cores/48 HT), 2.10 GHz, 196GB RAM.

Results on the 128 univariate datasets:

Datasets RI ARI NMI Runtime (secs)
ACSF1 0.720130 0.133853 0.38816 16.44156
Adiac 0.950243 0.245107 0.5885544 65.73705
AllGestureWiimoteX 0.8312724 0.097974 0.206865 44.08482
AllGestureWiimoteY 0.8322620 0.1298562 0.2612072 41.394241
AllGestureWiimoteZ 0.8305639 0.0805551 0.1834998 36.600462
ArrowHead 0.623006 0.17425450 0.2533444 1.3054324
BME 0.623202 0.1905601 0.2877219 0.4999676
Beef 0.6586440 0.093608 0.27548189 0.8396471
BeetleFly 0.52217948 0.04438771 0.05563189 0.536824
BirdChicken 0.557179 0.1147453 0.1115865 0.3971603
CBF 0.8754116 0.7241217 0.76718 2.6086939
Car 0.662184 0.135845 0.2161395 2.8708315
Chinatown 0.5275538 0.043759 0.016924 0.3752007
ChlorineConcentration 0.5261843 -0.0009891 0.0007648 45.2590362
CinCECGTorso 0.63144 0.0627054 0.105833 118.6877229
Coffee 0.7746103 0.549642 0.5130821 0.1543948
Computers 0.5296809 0.05959965 0.0573684 4.7628411
CricketX 0.86968 0.17770 0.358468 18.7591078
CricketY 0.8716223 0.202953 0.372466 20.3061207
CricketZ 0.8708478 0.181479 0.366086 23.5766044
Crop 0.922896 0.2378824 0.4379565 2016.38332
DiatomSizeReduction 0.919138 0.8000443 0.82079 2.0050213
DistalPhalanxOutlineAgeGroup 0.7089805 0.40880 0.3327341 1.8217814
DistalPhalanxOutlineCorrect 0.4994557 -0.0010303 2.97467e-05 0.9867624
DistalPhalanxTW 0.861218 0.66677209 0.5412476 2.6783893
DodgerLoopDay 0.7667177 0.2080549 0.403120 1.537474
DodgerLoopGame 0.5592195 0.118973 0.1007804 0.4339152
DodgerLoopWeekend 0.883705 0.7639901 0.726488 0.4244024
ECG200 0.615723 0.221028 0.1355204 0.3517059
ECG5000 0.794273 0.5789588 0.551086 62.80226
ECGFiveDays 0.8450622 0.69024 0.65035860 1.9896606
EOGHorizontalSignal 0.8621825 0.22106 0.3988588 76.3076898
EOGVerticalSignal 0.8712630 0.1987407 0.3630311 136.628252
Earthquakes 0.515463 0.002441935 0.00365934 5.8951894
ElectricDevices 0.699713 0.08102712 0.1900975 798.8596981
EthanolLevel 0.622721 0.0032826 0.0076 63.510865
FaceAll 0.914647 0.446507 0.621303 77.628496
FaceFour 0.756274 0.37390466 0.459848 0.666998
FacesUCR 0.905414 0.407250 0.602981 82.0091669
FiftyWords 0.951268 0.353808 0.646822 77.2777564
Fish 0.78469 0.1885622 0.31931 7.698090
FordA 0.5729417 0.14588 0.108051 392.9051991
FordB 0.512885 0.025769 0.0192114 338.176240
FreezerRegularTrain 0.638638 0.277277 0.211358 21.8496562
FreezerSmallTrain 0.63912 0.2782464 0.2121770 20.948636
Fungi 0.8383608 0.370585 0.7441787 2.4766722
GestureMidAirD1 0.944996 0.2924181 0.630078 20.7455286
GestureMidAirD2 0.945983 0.32512 0.668287 17.3725095
GestureMidAirD3 0.93191 0.1287144 0.462995 20.0660984
GesturePebbleZ1 0.882812 0.58672 0.672185 5.3699548
GesturePebbleZ2 0.865687 0.531216 0.627707 5.6506422
GunPoint 0.497487 -0.005050 0.0 0.27812729
GunPointAgeSpan 0.532133 0.06442548 0.0534333 0.8154745
GunPointMaleVersusFemale 0.7919389 0.583864 0.574584 0.9656176
GunPointOldVersusYoung 0.518569 0.0371419 0.02792863 0.8558587
Ham 0.5251766 0.050364 0.0393745 1.4598628
HandOutlines 0.684268 0.36275 0.2533 108.3821474
Haptics 0.683934 0.06481423 0.088467 18.5722705
Herring 0.5018085 0.0038426 0.0079538 0.5510935
HouseTwenty 0.518445 0.036408 0.0294433 8.1808792
InlineSkate 0.7349455 0.035525 0.1013887 60.3541959
InsectEPGRegularTrain 0.7080033 0.3670333 0.3815031 6.3469509
InsectEPGSmallTrain 0.706829 0.3643330 0.381449 6.4372878
InsectWingbeatSound 0.817402 0.203979 0.417454 106.50463
ItalyPowerDemand 0.632077 0.2643881 0.2290163 1.142456
LargeKitchenAppliances 0.5959861 0.1587658 0.158297 19.1498729
Lightning2 0.531735 0.057807 0.091983 1.2679817
Lightning7 0.809829 0.3245682 0.5033405 2.9859982
Mallat 0.9280703 0.7319002 0.880742 63.637825
Meat 0.81152 0.598769 0.6618977 0.769969
MedicalImages 0.6758102 0.0728651 0.2273344 21.5877388
MelbournePedestrian 0.870859 0.352634 0.475787 53.1154542
MiddlePhalanxOutlineAgeGroup 0.72316083 0.4075420 0.3944312 1.2056471
MiddlePhalanxOutlineCorrect 0.49977174 -0.003736340 0.0008948 1.3280515
MiddlePhalanxTW 0.824102 0.516091 0.4439475 4.2374399
MixedShapesRegularTrain 0.813364 0.454867 0.517074 281.8805552
MixedShapesSmallTrain 0.8043481 0.42862725 0.4831717 132.92262
MoteStrain 0.803214 0.606398 0.4989154 1.9564175
NonInvasiveFetalECGThorax1 0.950663 0.3284714 0.673888 983.400489
NonInvasiveFetalECGThorax2 0.966616 0.460978 0.7620196 914.974343
OSULeaf 0.7845599 0.26266825 0.36322052 5.6948894
OliveOil 0.84537 0.641611 0.6482696 0.9241004
PLAID 0.8575927 0.2757823 0.400212 139.861927
PhalangesOutlinesCorrect 0.50535451 0.01068759 0.0102117 3.467281
Phoneme 0.9278681 0.034855 0.21230 284.5056299
PickupGestureWiimoteZ 0.856000 0.273205 0.520960 0.959337
PigAirwayPressure 0.912801 0.02888090 0.4359559 108.75665
PigArtPressure 0.957855 0.25324 0.7065518 85.6010015
PigCVP 0.960429 0.185662 0.65441 95.0936539
Plane 0.9271633 0.73900812 0.85989 0.5993027
PowerCons 0.603472 0.2073108 0.192511 1.0429059
ProximalPhalanxOutlineAgeGroup 0.770749274 0.513001 0.476826 1.5074031
ProximalPhalanxOutlineCorrect 0.534142 0.0669039 0.0861243 0.5041136
ProximalPhalanxTW 0.8290153 0.5644440 0.5501682 2.0008952
RefrigerationDevices 0.557799 0.00591210 0.007814 14.5373435
Rock 0.703975 0.2364493 0.34588788 14.234106
ScreenType 0.559913 0.01123146 0.0121790 19.1829763
SemgHandGenderCh2 0.5466622 0.092221 0.058817 12.8683178
SemgHandMovementCh2 0.7444837 0.1319358 0.2250277 62.862215
SemgHandSubjectCh2 0.7296606 0.2050891 0.2754994 49.4141228
ShakeGestureWiimoteZ 0.901898 0.462442 0.6747047 1.5737051
ShapeletSim 0.7377881 0.4757332 0.447908 0.9869574
ShapesAll 0.9780872 0.4180266 0.740378 166.1683117
SmallKitchenAppliances 0.3737210 0.0012730 0.0217231 4.4734788
SmoothSubspace 0.627010 0.164396 0.179225 2.1865543
SonyAIBORobotSurface1 0.675473 0.3505679 0.35182660 1.6894352
SonyAIBORobotSurface2 0.6000775 0.1939438 0.1365685 2.9754101
StarLightCurves 0.766313 0.5122511 0.6024638 964.46397
Strawberry 0.504165 -0.019398 0.12339 4.6568317
SwedishLeaf 0.8957285 0.32160817 0.5586813 24.8132561
Symbols 0.889196 0.6500050 0.7775430 11.0962628
SyntheticControl 0.88920255 0.613962 0.710865 2.6594387
ToeSegmentation1 0.5020124 0.00407319 0.0050804 1.2348743
ToeSegmentation2 0.635188 0.26236656 0.210026 0.8832202
Trace 0.6985025 0.4320041 0.58108 0.748028
TwoLeadECG 0.5448122 0.0896479 0.06946036 4.2016234
TwoPatterns 0.687406 0.2354546 0.3377804 67.9150568
UMD 0.601005 0.12067420 0.1685033 0.6761436
UWaveGestureLibraryAll 0.91405589 0.6146967 0.682234 306.4056649
UWaveGestureLibraryX 0.856831 0.364044 0.4629476 164.2872381
UWaveGestureLibraryY 0.829982 0.2456431 0.34295234 302.7145652
UWaveGestureLibraryZ 0.8466015 0.34710914 0.456047 186.73311
Wafer 0.538320 0.0138277 0.00342959 32.045277
Wine 0.4964785 -0.0051879 0.0010564 0.5772297
WordSynonyms 0.8955053 0.226308983 0.4521644651 45.8095883
Worms 0.6517901 0.0400797 0.064035 5.9496994
WormsTwoClass 0.502826 0.0054806 0.0083700 2.8476746
Yoga 0.4999203 -0.00026 0.00015200 151.1891111

Results on the 28 multivariate datasets:

Datasets RI ARI NMI Runtime (secs)
ArticularyWordRecognition 0.77671625 0.07149355 0.3011789 1546.01149
AtrialFibrillation 0.5687356 0.011988 0.0802680 35.360911
BasicMotions 0.8301898 0.5432472 0.598455 30.48984
CharacterTrajectories 0.6844712 0.1070294 0.322181 2456.18020
Cricket 0.8356548 0.276009 0.5089841 1429.36256
DuckDuckGeese 0.632848 0.01925416 0.0776541 8474.327226
ERing 0.81792419 0.36732625 0.455813686 163.9078219
Epilepsy 0.7984578 0.4743980 0.51779585 268.4851809
EthanolConcentration 0.5652897 -0.00074536 0.003556034 611.921332
FaceDetection 0.5000501 0.00010108 0.00015046 169734.49986
FingerMovements 0.4999246 0.00077181 0.00301908 146.7177615
HandMovementDirection 0.564685 0.0005354 0.015490 653.58844
Handwriting 0.9088080 0.0331515 0.204900 1473.25828
Heartbeat 0.5034637 -0.001199 0.00083743 2197.214505
InsectWingbeat 0.75276 0.00145 0.00373 868301.6473
JapaneseVowels 0.77892996 0.0648988 0.143400 386.25808
LSST 0.78172231 0.05318 0.099389 2098.3571827
Libras 0.869726095 0.172633 0.419726 405.35505
MotorImagery 0.5006273 0.0014968 0.00320020 10928.88054
NATOPS 0.735945 0.0859692 0.14600909 514.7707
PenDigits 0.7892067 0.163134 0.291098 1503.162750
PhonemeSpectra 0.9443979 0.0189895 0.119970 13252.5714916
RacketSports 0.607855 0.0429515 0.0708733 107.0638691
SelfRegulationSCP1 0.542662 0.0854783 0.072874 1256.628221
SelfRegulationSCP2 0.499026 -0.00194560 0.000499 1021.38219
SpokenArabicDigits 0.844546 0.2130830 0.332006 6801.11004
StandWalkJump 0.58490 0.11269 0.185295 623.50776
UWaveGestureLibrary 0.77915 0.1928167 0.3521283 785.27181