forked from Kitware/VTK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vtkImageGradient.cxx
320 lines (281 loc) · 10.7 KB
/
vtkImageGradient.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageGradient.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageGradient.h"
#include "vtkDataArray.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
#include <vtksys/ios/sstream>
vtkStandardNewMacro(vtkImageGradient);
//----------------------------------------------------------------------------
// Construct an instance of vtkImageGradient fitler.
vtkImageGradient::vtkImageGradient()
{
this->HandleBoundaries = 1;
this->Dimensionality = 2;
// by default process active point scalars
this->SetInputArrayToProcess(0,0,0,vtkDataObject::FIELD_ASSOCIATION_POINTS,
vtkDataSetAttributes::SCALARS);
}
//----------------------------------------------------------------------------
void vtkImageGradient::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "HandleBoundaries: " << this->HandleBoundaries << "\n";
os << indent << "Dimensionality: " << this->Dimensionality << "\n";
}
//----------------------------------------------------------------------------
int vtkImageGradient::RequestInformation(vtkInformation*,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector)
{
// Get input and output pipeline information.
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
// Get the input whole extent.
int extent[6];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent);
// Shrink output image extent by one pixel if not handling boundaries.
if(!this->HandleBoundaries)
{
for(int idx = 0; idx < this->Dimensionality; ++idx)
{
extent[idx*2] += 1;
extent[idx*2 + 1] -= 1;
}
}
// Store the new whole extent for the output.
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent, 6);
// Set the number of point data componets to the number of
// components in the gradient vector.
vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_DOUBLE,
this->Dimensionality);
return 1;
}
//----------------------------------------------------------------------------
// This method computes the input extent necessary to generate the output.
int vtkImageGradient::RequestUpdateExtent(vtkInformation*,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector)
{
// Get input and output pipeline information.
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
// Get the input whole extent.
int wholeExtent[6];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
// Get the requested update extent from the output.
int inUExt[6];
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt);
// In order to do central differencing we need one more layer of
// input pixels than we are producing output pixels.
for(int idx = 0; idx < this->Dimensionality; ++idx)
{
inUExt[idx*2] -= 1;
inUExt[idx*2+1] += 1;
// If handling boundaries instead of shrinking the image then we
// must clip the needed extent within the whole extent of the
// input.
if (this->HandleBoundaries)
{
if (inUExt[idx*2] < wholeExtent[idx*2])
{
inUExt[idx*2] = wholeExtent[idx*2];
}
if (inUExt[idx*2 + 1] > wholeExtent[idx*2 + 1])
{
inUExt[idx*2 + 1] = wholeExtent[idx*2 + 1];
}
}
}
// Store the update extent needed from the intput.
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt, 6);
return 1;
}
//----------------------------------------------------------------------------
// This execute method handles boundaries.
// it handles boundaries. Pixels are just replicated to get values
// out of extent.
template <class T>
void vtkImageGradientExecute(vtkImageGradient *self,
vtkImageData *inData, T *inPtr,
vtkImageData *outData, double *outPtr,
int outExt[6], int id)
{
int idxX, idxY, idxZ;
int maxX, maxY, maxZ;
vtkIdType inIncX, inIncY, inIncZ;
vtkIdType outIncX, outIncY, outIncZ;
unsigned long count = 0;
unsigned long target;
int axesNum;
int *inExt = inData->GetExtent();
int *wholeExtent;
vtkIdType *inIncs;
double r[3], d;
int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax;
// find the region to loop over
maxX = outExt[1] - outExt[0];
maxY = outExt[3] - outExt[2];
maxZ = outExt[5] - outExt[4];
target = static_cast<unsigned long>((maxZ+1)*(maxY+1)/50.0);
target++;
// Get the dimensionality of the gradient.
axesNum = self->GetDimensionality();
// Get increments to march through data
inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
// The data spacing is important for computing the gradient.
// central differences (2 * ratio).
// Negative because below we have (min - max) for dx ...
inData->GetSpacing(r);
r[0] = -0.5 / r[0];
r[1] = -0.5 / r[1];
r[2] = -0.5 / r[2];
// get some other info we need
inIncs = inData->GetIncrements();
wholeExtent = inData->GetExtent();
// Move the pointer to the correct starting position.
inPtr += (outExt[0]-inExt[0])*inIncs[0] +
(outExt[2]-inExt[2])*inIncs[1] +
(outExt[4]-inExt[4])*inIncs[2];
// Loop through output pixels
for (idxZ = 0; idxZ <= maxZ; idxZ++)
{
useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2];
useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2];
for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
{
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1];
useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1];
for (idxX = 0; idxX <= maxX; idxX++)
{
useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0];
useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0];
// do X axis
d = static_cast<double>(inPtr[useXMin]);
d -= static_cast<double>(inPtr[useXMax]);
d *= r[0]; // multiply by the data spacing
*outPtr = d;
outPtr++;
// do y axis
d = static_cast<double>(inPtr[useYMin]);
d -= static_cast<double>(inPtr[useYMax]);
d *= r[1]; // multiply by the data spacing
*outPtr = d;
outPtr++;
if (axesNum == 3)
{
// do z axis
d = static_cast<double>(inPtr[useZMin]);
d -= static_cast<double>(inPtr[useZMax]);
d *= r[2]; // multiply by the data spacing
*outPtr = d;
outPtr++;
}
inPtr++;
}
outPtr += outIncY;
inPtr += inIncY;
}
outPtr += outIncZ;
inPtr += inIncZ;
}
}
int vtkImageGradient::RequestData(
vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector)
{
if (!this->Superclass::RequestData(request, inputVector, outputVector))
{
return 0;
}
vtkImageData* output = vtkImageData::GetData(outputVector);
vtkDataArray* outArray = output->GetPointData()->GetScalars();
vtksys_ios::ostringstream newname;
newname << (outArray->GetName()?outArray->GetName():"")
<< "Gradient";
outArray->SetName(newname.str().c_str());
// Why not pass the original array?
if (this->GetInputArrayToProcess(0, inputVector))
{
output->GetPointData()->AddArray(
this->GetInputArrayToProcess(0, inputVector));
}
return 1;
}
//----------------------------------------------------------------------------
// This method contains a switch statement that calls the correct
// templated function for the input data type. This method does handle
// boundary conditions.
void vtkImageGradient::ThreadedRequestData(vtkInformation*,
vtkInformationVector** inputVector,
vtkInformationVector*,
vtkImageData*** inData,
vtkImageData** outData,
int outExt[6],
int threadId)
{
// Get the input and output data objects.
vtkImageData* input = inData[0][0];
vtkImageData* output = outData[0];
// The ouptut scalar type must be double to store proper gradients.
if(output->GetScalarType() != VTK_DOUBLE)
{
vtkErrorMacro("Execute: output ScalarType is "
<< output->GetScalarType() << "but must be double.");
return;
}
vtkDataArray* inputArray = this->GetInputArrayToProcess(0, inputVector);
if (!inputArray)
{
vtkErrorMacro("No input array was found. Cannot execute");
return;
}
// Gradient makes sense only with one input component. This is not
// a Jacobian filter.
if(inputArray->GetNumberOfComponents() != 1)
{
vtkErrorMacro(
"Execute: input has more than one component. "
"The input to gradient should be a single component image. "
"Think about it. If you insist on using a color image then "
"run it though RGBToHSV then ExtractComponents to get the V "
"components. That's probably what you want anyhow.");
return;
}
void* inPtr = inputArray->GetVoidPointer(0);
double* outPtr = static_cast<double *>(
output->GetScalarPointerForExtent(outExt));
switch(inputArray->GetDataType())
{
vtkTemplateMacro(
vtkImageGradientExecute(this, input, static_cast<VTK_TT*>(inPtr),
output, outPtr, outExt, threadId)
);
default:
vtkErrorMacro("Execute: Unknown ScalarType " << input->GetScalarType());
return;
}
}