forked from Kitware/VTK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vtkImageSobel2D.cxx
220 lines (193 loc) · 7.23 KB
/
vtkImageSobel2D.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageSobel2D.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageSobel2D.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <cmath>
vtkStandardNewMacro(vtkImageSobel2D);
//----------------------------------------------------------------------------
// Construct an instance of vtkImageSobel2D fitler.
vtkImageSobel2D::vtkImageSobel2D()
{
this->KernelSize[0] = 3;
this->KernelSize[1] = 3;
this->KernelSize[2] = 1;
this->KernelMiddle[0] = 1;
this->KernelMiddle[1] = 1;
this->KernelMiddle[2] = 0;
this->HandleBoundaries = 1;
}
//----------------------------------------------------------------------------
void vtkImageSobel2D::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
}
//----------------------------------------------------------------------------
int vtkImageSobel2D::RequestInformation (vtkInformation *request,
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
int retval =
this->Superclass::RequestInformation(request, inputVector, outputVector);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_DOUBLE, 2);
return retval;
}
//----------------------------------------------------------------------------
// This execute method handles boundaries.
// it handles boundaries. Pixels are just replicated to get values
// out of extent.
template <class T>
void vtkImageSobel2DExecute(vtkImageSobel2D *self,
vtkImageData *inData, T *inPtr,
vtkImageData *outData, int *outExt,
double *outPtr, int id,
vtkInformation *inInfo)
{
double r0, r1, *r;
// For looping though output (and input) pixels.
int min0, max0, min1, max1, min2, max2;
int outIdx0, outIdx1, outIdx2;
vtkIdType outInc0, outInc1, outInc2;
double *outPtr0, *outPtr1, *outPtr2, *outPtrV;
vtkIdType inInc0, inInc1, inInc2;
T *inPtr0, *inPtr1, *inPtr2;
// For sobel function convolution (Left Right incs for each axis)
vtkIdType inInc0L, inInc0R, inInc1L, inInc1R;
T *inPtrL, *inPtrR;
double sum;
// Boundary of input image
int inWholeMin0,inWholeMax0;
int inWholeMin1,inWholeMax1;
int inWholeExt[6];
unsigned long count = 0;
unsigned long target;
// Get boundary information
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), inWholeExt);
inWholeMin0 = inWholeExt[0];
inWholeMax0 = inWholeExt[1];
inWholeMin1 = inWholeExt[2];
inWholeMax1 = inWholeExt[3];
// Get information to march through data
inData->GetIncrements(inInc0, inInc1, inInc2);
outData->GetIncrements(outInc0, outInc1, outInc2);
min0 = outExt[0]; max0 = outExt[1];
min1 = outExt[2]; max1 = outExt[3];
min2 = outExt[4]; max2 = outExt[5];
// We want the input pixel to correspond to output
inPtr = static_cast<T *>(inData->GetScalarPointer(min0,min1,min2));
// The data spacing is important for computing the gradient.
// Scale so it has the same range as gradient.
r = inData->GetSpacing();
r0 = 0.125 / r[0];
r1 = 0.125 / r[1];
// ignore r2
target = static_cast<unsigned long>((max2-min2+1)*(max1-min1+1)/50.0);
target++;
// loop through pixels of output
outPtr2 = outPtr;
inPtr2 = inPtr;
for (outIdx2 = min2; outIdx2 <= max2; ++outIdx2)
{
outPtr1 = outPtr2;
inPtr1 = inPtr2;
for (outIdx1 = min1; !self->AbortExecute && outIdx1 <= max1; ++outIdx1)
{
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
inInc1L = (outIdx1 == inWholeMin1) ? 0 : -inInc1;
inInc1R = (outIdx1 == inWholeMax1) ? 0 : inInc1;
outPtr0 = outPtr1;
inPtr0 = inPtr1;
for (outIdx0 = min0; outIdx0 <= max0; ++outIdx0)
{
inInc0L = (outIdx0 == inWholeMin0) ? 0 : -inInc0;
inInc0R = (outIdx0 == inWholeMax0) ? 0 : inInc0;
// compute vector.
outPtrV = outPtr0;
// 0 direction
inPtrL = inPtr0 + inInc0L;
inPtrR = inPtr0 + inInc0R;
sum = 2.0 * (*inPtrR - *inPtrL);
sum += static_cast<double>(inPtrR[inInc1L] + inPtrR[inInc1R]);
sum -= static_cast<double>(inPtrL[inInc1L] + inPtrL[inInc1R]);
*outPtrV = sum * r0;
++outPtrV;
// 1 direction
inPtrL = inPtr0 + inInc1L;
inPtrR = inPtr0 + inInc1R;
sum = 2.0 * (*inPtrR - *inPtrL);
sum += static_cast<double>(inPtrR[inInc0L] + inPtrR[inInc0R]);
sum -= static_cast<double>(inPtrL[inInc0L] + inPtrL[inInc0R]);
*outPtrV = static_cast<double>(sum * r1);
outPtr0 += outInc0;
inPtr0 += inInc0;
}
outPtr1 += outInc1;
inPtr1 += inInc1;
}
outPtr2 += outInc2;
inPtr2 += inInc2;
}
}
//----------------------------------------------------------------------------
// This method contains a switch statement that calls the correct
// templated function for the input region type. The output region
// must be of type double. This method does handle boundary conditions.
// The third axis is the component axis for the output.
void vtkImageSobel2D::ThreadedRequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *vtkNotUsed(outputVector),
vtkImageData ***inData,
vtkImageData **outData,
int outExt[6], int id)
{
void *inPtr, *outPtr;
int inExt[6], wholeExt[6];
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExt);
this->InternalRequestUpdateExtent(inExt, outExt, wholeExt);
inPtr = inData[0][0]->GetScalarPointerForExtent(inExt);
outPtr = outData[0]->GetScalarPointerForExtent(outExt);
// this filter expects that output is type double.
if (outData[0]->GetScalarType() != VTK_DOUBLE)
{
vtkErrorMacro(<< "Execute: output ScalarType, "
<< vtkImageScalarTypeNameMacro(outData[0]->GetScalarType())
<< ", must be double");
return;
}
// this filter cannot handle multi component input.
if (inData[0][0]->GetNumberOfScalarComponents() != 1)
{
vtkWarningMacro("Expecting input with only one compenent.\n");
}
switch (inData[0][0]->GetScalarType())
{
vtkTemplateMacro(
vtkImageSobel2DExecute(this, inData[0][0],
static_cast<VTK_TT *>(inPtr), outData[0], outExt,
static_cast<double *>(outPtr),id, inInfo));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}