We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The following data and code can reproduce this issue. Note that the latest ggplot2 and ggforce are used.
library(ggplot2) library(ggforce) x <- c(-4.46798966620377, -2.1090312453605, -1.84601768294516, 5.79499827429486, 0.43592398267521, -3.01641689187153, -4.10398493436269, -1.53467832497444, -1.64403248330696, 1.88866969350521, -1.10071376022678, -0.732424476000914, 4.9355457310868, 7.16901087881661, -11.1749760466164, -0.330647142722807, 4.99431746262638, 3.99350248184654, 5.57024373532071, -4.9003441612954, -2.70964164932524, -3.13827001445066, 8.98938301829994, 1.15304888846147, -4.10835606970075, -3.80814439783665, -1.11500667144161, -4.01741501531724, 0.600033270173348, -1.80874358837064, -0.381658708050097, 6.46574124184736, 6.37340082097916, 0.273747698054138, 4.90249513991362, 6.16139025975088, 2.62462429559324, 5.36868924362433, -6.21295925665591, -2.27676433338093, -1.23143424193455, 5.79794917170878, 1.39159889636088, -3.27991565841227, -3.32113773742275, -1.89630876814511, -3.93776678590554, 0.785189427950814, -0.794902846480633, -0.628082507785516, 5.74575717936985, 7.04070961795171, 0.788392068682478, 5.60989643609462, 4.22291712058141, 2.10055019294984, 5.85725439334508) y <- c(-1.88979052125517, -3.99859032133039, 2.88794711532744, 1.04400982509528, -9.20071736934793, -0.874436876290539, -5.01035759345655, 1.56129515932716, -2.28617788003896, 1.46927851645699, -1.23088074711093, -0.0512634990258398, 0.855694107232475, 5.24359789459775, -5.19349234505035, -5.80406825757198, 2.0373710339048, 3.66304250612958, 2.47355081727165, -2.91698101544892, -3.68956634231607, 5.84439063122804, 0.596732520647421, -8.31179169039804, -0.63493227634592, -5.93821117884396, 1.019956220117, -3.25066580239872, 1.34229087097502, -1.24120130291848, 1.55903028956034, 2.09890123632997, 4.16912629275164, -7.18715263054722, 3.06941990106059, 3.14300986520884, 3.17857513049073, 4.73226062353877, -3.44527637667008, -3.41082697427231, 3.63529860825317, 1.63130316772536, -9.30339326171906, -0.196903044477533, -5.23904552721807, 0.814520292592067, -2.58187687963695, 0.83932864039429, -1.73754258868063, 0.524089051459452, 0.100885472398243, 4.28702335064132, -5.19405687460876, 3.27950050157283, 2.34740358671191, 3.9834926184684, 5.45626038770104) celltype <- c("Amnion", "Endoderm", "Endothelial & erythroid cell", "Ependymal cell", "Epiblast", "Epithelium", "ExE endoderm", "ExE mesoderm", "Gut", "Limb bud mesenchyme cell", "Mesoderm", "MSC/Fib", "Neural ectoderm", "Neuron", "PGC", "Primitive streak", "Radial glial cell", "Retinal pigmented epithelium", "Retinal progenitor cell", "Amnion & PGC", "Endoderm", "Endothelial & erythroid cell", "Ependymal cell", "Epiblast", "Epithelium", "ExE endoderm", "ExE mesoderm", "Gut", "Limb bud mesenchyme cell", "Mesoderm", "MSC/Fib", "Neural ectoderm", "Neuron", "Primitive streak", "Radial glial cell", "Retinal progenitor cell", "Schwann cell", "Sensory neuron", "Amnion & PGC", "Endoderm", "Endothelial & erythroid cell", "Ependymal cell", "Epiblast", "Epithelium", "ExE endoderm", "ExE mesoderm", "Gut", "Limb bud mesenchyme cell", "Mesoderm", "MSC/Fib", "Neural ectoderm", "Neuron", "Primitive streak", "Radial glial cell", "Retinal progenitor cell & RPE", "Schwann cell", "Sensory neuron")
When plotting with all the data above, geom_mark_hull only works for certain points.
df <- data.frame(x = x, y = y, celltype = celltype) ggplot(data = df, aes(x, y)) + geom_point(mapping = aes(color = celltype)) + geom_mark_hull(mapping = aes(fill = celltype))
However, when plotting with a subset of data (<40 data points), geom_mark_hull works without any omissions.
ggplot(data = df[1:39,], aes(x, y)) + geom_point(mapping = aes(color = celltype)) + geom_mark_hull(mapping = aes(fill = celltype))
R version 4.2.0 (2022-04-22) Platform: x86_64-pc-linux-gnu (64-bit) Running under: CentOS Linux 8 Matrix products: default BLAS/LAPACK: /usr/lib64/libopenblasp-r0.3.12.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] grid stats graphics grDevices utils datasets methods base other attached packages: [1] concaveman_1.1.0 ggforce_0.4.1 ggraph_2.1.0 igraph_1.3.5 RcppParallel_5.1.5 SCP_0.2.5.9010 openxlsx_4.2.5 [8] plotly_4.10.1 scales_1.2.1 circlize_0.4.15 ComplexHeatmap_2.15.1 stringr_1.5.0 UCell_2.0.1 dplyr_1.0.10 [15] cowplot_1.1.1 ggplot2_3.4.0 SeuratDisk_0.0.0.9019 SeuratObject_4.1.3 Seurat_4.3.0 loaded via a namespace (and not attached): [1] vcd_1.4-10 ica_1.0-3 class_7.3-20 V8_4.2.1 foreach_1.5.2 lmtest_0.9-40 [7] rprojroot_2.0.3 crayon_1.5.2 laeken_0.5.2 MASS_7.3-58.1 Matrix.utils_0.9.8 nlme_3.1-160 [13] rlang_1.0.6 XVector_0.38.0 ROCR_1.0-11 irlba_2.3.5.1 limma_3.52.4 smoother_1.1 [19] filelock_1.0.2 BiocParallel_1.32.4 rjson_0.2.21 bit64_4.0.5 glue_1.6.2 sctransform_0.3.5 [25] parallel_4.2.0 spatstat.sparse_3.0-0 AnnotationDbi_1.60.0 BiocGenerics_0.44.0 classInt_0.4-8 yaImpute_1.0-33 [31] spatstat.geom_3.0-3 tidyselect_1.2.0 SummarizedExperiment_1.28.0 fitdistrplus_1.1-8 XML_3.99-0.13 tidyr_1.2.1 [37] zoo_1.8-11 sf_1.0-9 xtable_1.8-4 RcppHNSW_0.4.1 magrittr_2.0.3 cli_3.4.1 [43] zlibbioc_1.44.0 rstudioapi_0.14 miniUI_0.1.1.1 sp_1.5-1 parallelDist_0.2.6 RcppEigen_0.3.3.9.3 [49] shiny_1.7.4 clue_0.3-63 cluster_2.1.4 tidygraph_1.2.2 pcaMethods_1.88.0 KEGGREST_1.38.0 [55] tibble_3.1.8 ggrepel_0.9.2 listenv_0.9.0 Biostrings_2.66.0 png_0.1-8 future_1.30.0 [61] withr_2.5.0 bitops_1.0-7 ranger_0.14.1 plyr_1.8.8 e1071_1.7-12 pillar_1.8.1 [67] GlobalOptions_0.1.2 cachem_1.0.6 scatterplot3d_0.3-42 hdf5r_1.3.7 TTR_0.24.3 GetoptLong_1.0.5 [73] xts_0.12.1 vctrs_0.5.1 ellipsis_0.3.2 generics_0.1.3 rgdal_1.5-32 tools_4.2.0 [79] munsell_0.5.0 tweenr_2.0.2 proxy_0.4-27 DelayedArray_0.24.0 fastmap_1.1.0 compiler_4.2.0 [85] abind_1.4-5 httpuv_1.6.7 sessioninfo_1.2.2 rgeos_0.5-9 GenomeInfoDbData_1.2.9 gridExtra_2.3 [91] lattice_0.20-45 ggnewscale_0.4.8 deldir_1.0-6 utf8_1.2.2 later_1.3.0 BiocFileCache_2.6.0 [97] jsonlite_1.8.4 ggplot.multistats_1.0.0 princurve_2.1.6 pbapply_1.6-0 carData_3.0-5 lazyeval_0.2.2 [103] promises_1.2.0.1 car_3.1-0 doParallel_1.0.17 R.utils_2.12.2 goftest_1.2-3 spatstat.utils_3.0-1 [109] reticulate_1.26 Rtsne_0.16 Biobase_2.58.0 uwot_0.1.14 proxyC_0.3.3 yaml_2.3.6 [115] survival_3.4-0 systemfonts_1.0.4 htmltools_0.5.4 memoise_2.0.1 graphlayouts_0.8.4 IRanges_2.32.0 [121] destiny_3.10.0 viridisLite_0.4.1 digest_0.6.31 assertthat_0.2.1 mime_0.12 rappdirs_0.3.3 [127] units_0.8-1 RSQLite_2.2.19 future.apply_1.10.0 intrinsicDimension_1.2.0 data.table_1.14.6 blob_1.2.3 [133] S4Vectors_0.36.1 R.oo_1.25.0 styler_1.7.0 splines_4.2.0 labeling_0.4.2 rematch2_2.1.2 [139] Cairo_1.6-0 RCurl_1.98-1.9 hms_1.1.2 colorspace_2.0-3 GenomicRanges_1.50.2 shape_1.4.6 [145] nnet_7.3-18 GEOquery_2.64.2 Rcpp_1.0.9 RANN_2.6.1 fansi_1.0.3 tzdb_0.3.0 [151] VIM_6.2.2 parallelly_1.33.0 R6_2.5.1 ggridges_0.5.4 lifecycle_1.0.3 zip_2.2.1 [157] curl_4.3.3 leiden_0.4.3 robustbase_0.95-0 Matrix_1.5-1 RcppAnnoy_0.0.20 RColorBrewer_1.1-3 [163] iterators_1.0.14 spatstat.explore_3.0-5 R.cache_0.16.0 htmlwidgets_1.6.0 polyclip_1.10-4 biomaRt_2.54.0 [169] purrr_0.3.5 crosstalk_1.2.0 globals_0.16.2 SCopeLoomR_0.13.0 patchwork_1.1.2 spatstat.random_3.0-1 [175] slingshot_2.6.0 progressr_0.12.0 codetools_0.2-18 matrixStats_0.63.0 prettyunits_1.1.1 SingleCellExperiment_1.20.0 [181] dbplyr_2.2.1 RSpectra_0.16-1 R.methodsS3_1.8.2 GenomeInfoDb_1.34.4 gtable_0.3.1 DBI_1.1.3 [187] stats4_4.2.0 tensor_1.5 httr_1.4.4 KernSmooth_2.23-20 stringi_1.7.8 progress_1.2.2 [193] reshape2_1.4.4 farver_2.1.1 viridis_0.6.2 ggthemes_4.2.4 hexbin_1.28.2 magick_2.7.3 [199] xml2_1.3.3 boot_1.3-28 grr_0.9.5 readr_2.1.3 scattermore_1.0 DEoptimR_1.0-11 [205] bit_4.0.5 MatrixGenerics_1.10.0 spatstat.data_3.0-0 pkgconfig_2.0.3 TrajectoryUtils_1.6.0
The text was updated successfully, but these errors were encountered:
temporary bypass method... #312 (comment)
Sorry, something went wrong.
No branches or pull requests
The following data and code can reproduce this issue. Note that the latest ggplot2 and ggforce are used.
When plotting with all the data above, geom_mark_hull only works for certain points.
However, when plotting with a subset of data (<40 data points), geom_mark_hull works without any omissions.
The text was updated successfully, but these errors were encountered: