Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

checkpoint loading size mismatch #7

Closed
tiangexiang opened this issue Mar 18, 2024 · 9 comments
Closed

checkpoint loading size mismatch #7

tiangexiang opened this issue Mar 18, 2024 · 9 comments

Comments

@tiangexiang
Copy link

Thanks for your awesome work and contribution!
I tried to run your codes locally after downloading model checkpoints from huggingface, but I encountered a size mismatch error when doing so:

Traceback (most recent call last):
  File "/CRM/local_inference.py", line 152, in <module>    
    pipeline = TwoStagePipeline(  
  File "/CRM/pipelines.py", line 31, in __init__
    self.stage1_model.load_state_dict(torch.load(stage1_model_config.resume, map_location="cpu"), strict=False)
  File "/envs/crm/lib/python3.9/site-packages/torch/nn/modules/module.py", line 2153, in load_state_dict
    raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for LatentDiffusionInterface:
        size mismatch for model.diffusion_model.input_blocks.0.0.weight: copying a param with shape torch.Size([320, 8, 3, 3]) from checkpoint, the shape in current model is torch.Size([320, 4, 3, 3]).

Interestingly, when I swap the checkpoints for ccm_diffusion and pixel_diffusion, both loading and inference work pretty well. But the results are definitely not correct after swapping the checkpoints.

I have not changed anything to the codes.

@thuwzy
Copy link
Collaborator

thuwzy commented Mar 18, 2024

Can you provide the full code of local_inference.py?

@tiangexiang
Copy link
Author

import argparse
import numpy as np
import gradio as gr
from omegaconf import OmegaConf
import torch
from PIL import Image
import PIL
from pipelines import TwoStagePipeline
from huggingface_hub import hf_hub_download
import os
import rembg
from typing import Any
import json
import os
import json
import argparse

from model import CRM
from inference import generate3d

pipeline = None
rembg_session = rembg.new_session()


def expand_to_square(image, bg_color=(0, 0, 0, 0)):
    # expand image to 1:1
    width, height = image.size
    if width == height:
        return image
    new_size = (max(width, height), max(width, height))
    new_image = Image.new("RGBA", new_size, bg_color)
    paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
    new_image.paste(image, paste_position)
    return new_image

def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def remove_background(
    image: PIL.Image.Image,
    rembg_session: Any = None,
    force: bool = False,
    **rembg_kwargs,
) -> PIL.Image.Image:
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        # explain why current do not rm bg
        print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
        background = Image.new("RGBA", image.size, (0, 0, 0, 0))
        image = Image.alpha_composite(background, image)
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
    return image

def do_resize_content(original_image: Image, scale_rate):
    # resize image content wile retain the original image size
    if scale_rate != 1:
        # Calculate the new size after rescaling
        new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
        # Resize the image while maintaining the aspect ratio
        resized_image = original_image.resize(new_size)
        # Create a new image with the original size and black background
        padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
        paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
        padded_image.paste(resized_image, paste_position)
        return padded_image
    else:
        return original_image

def add_background(image, bg_color=(255, 255, 255)):
    # given an RGBA image, alpha channel is used as mask to add background color
    background = Image.new("RGBA", image.size, bg_color)
    return Image.alpha_composite(background, image)


def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
    """
    input image is a pil image in RGBA, return RGB image
    """
    print(background_choice)
    if background_choice == "Alpha as mask":
        background = Image.new("RGBA", image.size, (0, 0, 0, 0))
        image = Image.alpha_composite(background, image)
    else:
        image = remove_background(image, rembg_session, force_remove=True)
    image = do_resize_content(image, foreground_ratio)
    image = expand_to_square(image)
    image = add_background(image, backgroud_color)
    return image.convert("RGB")


def gen_image(input_image, seed, scale, step):
    global pipeline, model, args
    pipeline.set_seed(seed)
    rt_dict = pipeline(input_image, scale=scale, step=step)
    stage1_images = rt_dict["stage1_images"]
    stage2_images = rt_dict["stage2_images"]
    np_imgs = np.concatenate(stage1_images, 1)
    np_xyzs = np.concatenate(stage2_images, 1)

    glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, args.device)
    return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path, obj_path


parser = argparse.ArgumentParser()
parser.add_argument(
    "--stage1_config",
    type=str,
    default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
    help="config for stage1",
)
parser.add_argument(
    "--stage2_config",
    type=str,
    default="configs/stage2-v2-snr.yaml",
    help="config for stage2",
)

parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()

#crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
crm_path = '.../CRM.pth'
specs = json.load(open("configs/specs_objaverse_total.json"))
model = CRM(specs).to(args.device)
model.load_state_dict(torch.load(crm_path, map_location = args.device), strict=False)

stage1_config = OmegaConf.load(args.stage1_config).config
stage2_config = OmegaConf.load(args.stage2_config).config
stage2_sampler_config = stage2_config.sampler
stage1_sampler_config = stage1_config.sampler

stage1_model_config = stage1_config.models
stage2_model_config = stage2_config.models

#xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
#pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
xyz_path = '.../ccm-diffusion.pth' 
pixel_path = '.../pixel-diffusion.pth'
stage1_model_config.resume = xyz_path
stage2_model_config.resume = pixel_path

pipeline = TwoStagePipeline(
    stage1_model_config,
    stage2_model_config,
    stage1_sampler_config,
    stage2_sampler_config,
    device=args.device,
    dtype=torch.float16
)


image_path = '.../demo_img.png'
image_input = PIL.Image.open(image_path)
preprocessed_image = preprocess_image(image_input, "Alpha as mask", 1.0, "#7F7F7F")

novel_views, ccms, glb_path, obj_path = gen_image(preprocessed_image, 1234, 0.55, 30)

I didn't modify the codes too much actually.
Thanks

@thuwzy
Copy link
Collaborator

thuwzy commented Mar 19, 2024

The code

stage1_model_config.resume = xyz_path
stage2_model_config.resume = pixel_path

should be changed into the following code?

stage1_model_config.resume = pixel_path
stage2_model_config.resume = xyz_path

@tiangexiang
Copy link
Author

Thanks for your reply! Interesting, so the checkpoints do need to be swapped. Although the models can be loaded in this way, but I cannot get same output quality as the ones from HF gradio. Do you have any suggestions?

@thuwzy
Copy link
Collaborator

thuwzy commented Mar 19, 2024

Can I see your your 3D result? Also, pixel diffusion is for stage1 and xyz diffusion is for stage2. There is no swap.

@tiangexiang
Copy link
Author

I have tried two separate runs and got very different novel view generation results:
novel_views
novel_views2

@thuwzy
Copy link
Collaborator

thuwzy commented Mar 20, 2024

The last colume is your input image? I think the problem results from the unclean background? We assume that the input image is correctly pre-processed into a grey background, otherwise the results will be unpredictable.

@tiangexiang
Copy link
Author

Oh not exactly, here is the preprocessed image:
preprocessed
So you are suggesting the preprocessed image may be wrongly passed to the generation pipeline? Thanks!

@thuwzy
Copy link
Collaborator

thuwzy commented Mar 20, 2024

Yes, the preprocessed image may be wrongly passed to the generation pipeline. The last image should be exactly the same as the preprocessed image.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants