Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Question about the results in the paper #2

Closed
NicholasGote opened this issue Mar 17, 2021 · 2 comments
Closed

Question about the results in the paper #2

NicholasGote opened this issue Mar 17, 2021 · 2 comments

Comments

@NicholasGote
Copy link

Hi @iyuge2 ,

It's me again. I just read your wonderful paper on AAAI 2021 entitled "Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis".

I noticed that the results reported on that paper are better than the results listed in the 'MMSA/results/result-stat.md' table. I am curious why this happened. Are you using different hyperparameters of features?

Thanks for your time.

@NicholasGote
Copy link
Author

NicholasGote commented Mar 17, 2021

Solved. The results are from another paper.

@iyuge2
Copy link
Member

iyuge2 commented Mar 17, 2021

Hi @NicholasGote,

It is a great question!

Results listed in the MMSA/results/result-stat.md are reproduced under the same tuning and running settings. First, we tried 50 sets of parameters for each model on the same dataset with grid search. Then the parameters with best performance in validation set are selected as the final one.

Unfortunately, we lost the original parameters in our paper when we re-run all models and datasets. But you can try the following parameters, which can get comparable or better results than our work in AAAI 2021.

Thank you!

def __SELF_MM(self):
    tmp = {
        'commonParas':{
            'need_data_aligned': False,
            'need_model_aligned': False,
            'need_normalized': False,
            'use_bert': True,
            'use_finetune': True,
            'save_labels': False,
            'early_stop': 8,
            'update_epochs': 4
        },
        # dataset
        'datasetParas':{
            'mosi':{
                # the batch_size of each epoch is update_epochs * batch_size
                'batch_size': 16,
                'learning_rate_bert': 5e-5,
                'learning_rate_audio': 0.005,
                'learning_rate_video': 0.005,
                'learning_rate_other': 0.001,
                'weight_decay_bert': 0.001,
                'weight_decay_audio': 0.001,
                'weight_decay_video': 0.001,
                'weight_decay_other': 0.001,
                # feature subNets
                'a_lstm_hidden_size': 16,
                'v_lstm_hidden_size': 32,
                'a_lstm_layers': 1,
                'v_lstm_layers': 1,
                'text_out': 768, 
                'audio_out': 16,
                'video_out': 32, 
                'a_lstm_dropout': 0.0,
                'v_lstm_dropout': 0.0,
                't_bert_dropout':0.1,
                # post feature
                'post_fusion_dim': 128,
                'post_text_dim':32,
                'post_audio_dim': 16,
                'post_video_dim': 32,
                'post_fusion_dropout': 0.0,
                'post_text_dropout': 0.1,
                'post_audio_dropout': 0.1,
                'post_video_dropout': 0.0,
                # res
                'H': 3.0
            },
            'mosei':{
                # the batch_size of each epoch is update_epochs * batch_size
                'batch_size': 32,
                'learning_rate_bert': 5e-5,
                'learning_rate_audio': 0.005,
                'learning_rate_video': 1e-4,
                'learning_rate_other': 1e-3,
                'weight_decay_bert': 0.001,
                'weight_decay_audio': 0.0,
                'weight_decay_video': 0.0,
                'weight_decay_other': 0.01,
                # feature subNets
                'a_lstm_hidden_size': 16,
                'v_lstm_hidden_size': 32,
                'a_lstm_layers': 1,
                'v_lstm_layers': 1,
                'text_out': 768, 
                'audio_out': 16,
                'video_out': 32, 
                'a_lstm_dropout': 0.0,
                'v_lstm_dropout': 0.0,
                't_bert_dropout':0.1,
                # post feature
                'post_fusion_dim': 128,
                'post_text_dim':32,
                'post_audio_dim': 16,
                'post_video_dim': 32,
                'post_fusion_dropout': 0.1,
                'post_text_dropout': 0.0,
                'post_audio_dropout': 0.0,
                'post_video_dropout': 0.0,
                # res
                'H': 3.0
            },
            'sims':{
                # the batch_size of each epoch is update_epochs * batch_size
                'batch_size': 32,
                'learning_rate_bert': 5e-5,
                'learning_rate_audio': 5e-3,
                'learning_rate_video': 5e-3,
                'learning_rate_other': 1e-3,
                'weight_decay_bert': 0.001,
                'weight_decay_audio': 0.01,
                'weight_decay_video': 0.01,
                'weight_decay_other': 0.001,
                # feature subNets
                'a_lstm_hidden_size': 16,
                'v_lstm_hidden_size': 64,
                'a_lstm_layers': 1,
                'v_lstm_layers': 1,
                'text_out': 768, 
                'audio_out': 16,
                'video_out': 32, 
                'a_lstm_dropout': 0.0,
                'v_lstm_dropout': 0.0,
                't_bert_dropout':0.1,
                # post feature
                'post_fusion_dim': 128,
                'post_text_dim':64,
                'post_audio_dim': 16,
                'post_video_dim': 32,
                'post_fusion_dropout': 0.0,
                'post_text_dropout': 0.1,
                'post_audio_dropout': 0.1,
                'post_video_dropout': 0.0,
                # res
                'H': 1.0
            },
        },
    }
    return tmp

@iyuge2 iyuge2 reopened this Apr 23, 2021
@iyuge2 iyuge2 closed this as completed Apr 23, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants