-
Notifications
You must be signed in to change notification settings - Fork 11
/
config.py
316 lines (272 loc) · 13 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import torch
import shutil
from graph_completion.nets import GATNet
from pathlib import Path
from tensorboardX import SummaryWriter
from utils.tools import print_time_info, timeit
from models.torch_functions import SpecialLossAlign, SpecialLossRule
from utils.Datasets import AliagnmentDataset, TripleDataset, RuleDataset
from utils.functions import set_random_seed
from utils.functions import get_hits
from graph_completion.cross_graph_completion import CrossGraphCompletion
class Config(object):
def __init__(self):
# boot strap
self.train_bootstrap = False
self.ent_seeds = list()
self.aligned_entites = set()
self.aligned_relations = set()
# training
self.patience = 10
self.pre_train = 10
self.split_num = 1 # split triple dataset into parts
# self.min_epoch = 3000
self.bad_result = 0
self.now_epoch = 0
self.best_hits_1 = (0, 0, 0) # (epoch, sr, tg)
self.num_epoch = 500
self.update_cycle = 10
self.rule_infer = True
self.rule_transfer = True
self.train_seeds_ratio = 0.3
# model
self.w_adj = ''
self.net = None
self.sparse = True
self.optimizer = None
self.nheads = 1
self.num_layer = 2
self.non_acylic = True
self.embedding_dim = 300
self.graph_completion = True
# dataset
self.shuffle = True
self.batch_size = 64
self.num_workers = 4 # for the data_loader
self.nega_n_e = 25 # number of negative samples for each positive one
self.nega_n_r = 2
# hyper parameter
self.lr = 1e-3
self.beta = 1.0 # ratio of transe loss
self.alpha = 0.2 # alpha for the leaky relu
self.rule_scale = 0.9
self.l2_penalty = 0.0001
self.dropout_rate = 0.5
self.align_gamma = 3.0 # margin for entity loss
self.rel_align_gamma = 1.0
self.rule_gamma = 0.12 # margin for relation loss
# cuda
self.is_cuda = True
def init(self, directory, load=False):
set_random_seed()
directory = Path(directory)
self.graph_pair = directory.name
if load:
try:
self.cgc = CrossGraphCompletion.restore(directory / 'running_temp')
except FileNotFoundError:
print_time_info('CrossGraphCompletion cache file not found, start from the beginning.')
self.cgc = CrossGraphCompletion(directory, self.train_seeds_ratio, self.rule_transfer,
self.graph_completion)
self.cgc.init()
self.cgc.save(directory / 'running_temp')
else:
self.cgc = CrossGraphCompletion(directory, self.train_seeds_ratio, self.rule_transfer,
self.graph_completion)
self.cgc.init()
self.cgc.save(directory / 'running_temp')
self.cgc.check()
def train(self):
cgc = self.cgc
with torch.no_grad():
triples_sr = TripleDataset(cgc.triples_sr, self.nega_n_r)
triples_tg = TripleDataset(cgc.triples_tg, self.nega_n_r)
triples_data_sr = triples_sr.get_all()
triples_data_tg = triples_tg.get_all()
rules_sr = RuleDataset(cgc, 'new_triple_premises_sr', cgc.triples_sr, list(cgc.id2relation_sr.keys()),
self.nega_n_r)
rules_tg = RuleDataset(cgc, 'new_triple_premises_tg', cgc.triples_tg, list(cgc.id2relation_tg.keys()),
self.nega_n_r)
rules_data_sr = rules_sr.get_all()
rules_data_tg = rules_tg.get_all()
ad = AliagnmentDataset(cgc, 'entity_seeds', self.nega_n_e, len(cgc.id2entity_sr), len(cgc.id2entity_tg),
self.is_cuda)
ad_data = ad.get_all()
ad_rel = AliagnmentDataset(cgc, 'relation_seeds', self.nega_n_r, len(cgc.id2relation_sr),
len(cgc.id2relation_tg), self.is_cuda)
ad_rel_data = ad_rel.get_all()
if self.is_cuda:
self.net.cuda()
ad_data = [data.cuda() for data in ad_data]
ad_rel_data = [data.cuda() for data in ad_rel_data]
triples_data_sr = [data.cuda() for data in triples_data_sr]
triples_data_tg = [data.cuda() for data in triples_data_tg]
rules_data_sr = [data.cuda() for data in rules_data_sr]
rules_data_tg = [data.cuda() for data in rules_data_tg]
optimizer = self.optimizer(self.net.parameters(), lr=self.lr, weight_decay=self.l2_penalty)
criterion_align = SpecialLossAlign(self.align_gamma, cuda=self.is_cuda)
criterion_rel = SpecialLossAlign(self.rel_align_gamma, cuda=self.is_cuda)
criterion_transe = SpecialLossRule(self.rule_gamma, cuda=self.is_cuda)
criterion_rule = SpecialLossRule(self.rule_gamma, cuda=self.is_cuda)
for epoch in range(self.num_epoch):
self.net.train()
optimizer.zero_grad()
repre_sr, repre_tg, sr_rel_repre, tg_rel_repre, transe_tv, rule_tv = self.net(ad_data, ad_rel_data,
triples_data_sr,
triples_data_tg,
rules_data_sr, rules_data_tg)
align_loss = criterion_align(repre_sr, repre_tg)
rel_align_loss = criterion_rel(sr_rel_repre, tg_rel_repre)
transe_loss = criterion_transe(transe_tv)
if self.rule_infer:
rule_loss = criterion_rule(rule_tv)
loss = sum([align_loss, transe_loss, rel_align_loss, rule_loss])
else:
rule_loss = 0.0
loss = sum([align_loss, rel_align_loss, transe_loss])
loss.backward()
optimizer.step()
print_time_info(
'Epoch: %d; align loss = %.4f; relation align loss = %.4f; transe loss = %.4f; rule loss = %.4f.' % (
epoch + 1, float(align_loss), float(rel_align_loss), float(transe_loss), float(rule_loss)))
self.writer.add_scalars('data/Loss',
{'Align Loss': float(align_loss), 'TransE Loss': float(transe_loss),
'Rule Loss': float(rule_loss), 'Relation Align Loss': float(rel_align_loss)},
epoch)
self.now_epoch += 1
if (epoch + 1) % self.update_cycle == 0:
self.evaluate()
ad_data, ad_rel_data, triples_data_sr, triples_data_tg, rules_data_sr, rules_data_tg = self.negative_sampling(
ad, ad_rel, triples_sr, triples_tg, rules_sr, rules_tg)
if self.is_cuda:
torch.cuda.empty_cache()
ad_data = [data.cuda() for data in ad_data]
ad_rel_data = [data.cuda() for data in ad_rel_data]
triples_data_sr = [data.cuda() for data in triples_data_sr]
triples_data_tg = [data.cuda() for data in triples_data_tg]
rules_data_sr = [data.cuda() for data in rules_data_sr]
rules_data_tg = [data.cuda() for data in rules_data_tg]
@timeit
def negative_sampling(self, ad, ad_rel, triples_sr, triples_tg, rules_sr, rules_tg):
self.net.eval()
with torch.no_grad():
ad_seeds = ad.get_seeds()
ad_rel_seeds = ad_rel.get_seeds()
if self.is_cuda:
ad_seeds = [seeds.cuda() for seeds in ad_seeds]
ad_rel_seeds = [seeds.cuda() for seeds in ad_rel_seeds]
sample_relation = True
if self.graph_pair == 'dbp_yg':
sample_relation = False
# For Alignment
sr_nns, tg_nns, sr_rel_nns, tg_rel_nns = self.net.negative_sample(ad_seeds, ad_rel_seeds, sample_relation)
ad.update_negative_sample(sr_nns, tg_nns)
if sample_relation:
ad_rel.update_negative_sample(sr_rel_nns, tg_rel_nns)
else:
ad_rel.init()
ad_data = ad.get_all()
ad_rel_data = ad_rel.get_all()
triples_sr.init(), triples_tg.init(), rules_sr.init(), rules_tg.init()
# For TransE
triples_data_sr = triples_sr.get_all()
triples_data_tg = triples_tg.get_all()
# For rules
rules_data_sr = rules_sr.get_all()
rules_data_tg = rules_tg.get_all()
return ad_data, ad_rel_data, triples_data_sr, triples_data_tg, rules_data_sr, rules_data_tg
@timeit
@torch.no_grad()
def evaluate(self):
self.net.eval()
sr_data, tg_data = list(zip(*self.cgc.test_entity_seeds))
sr_data = torch.tensor(sr_data, dtype=torch.int64)
tg_data = torch.tensor(tg_data, dtype=torch.int64)
if self.is_cuda:
sr_data = sr_data.cuda()
tg_data = tg_data.cuda()
sim = self.net.predict((sr_data, tg_data))
for x, y in self.aligned_entites:
sim[x, y] -= 1.0
top_lr, top_rl, mr_lr, mr_rl, mrr_lr, mrr_rl = get_hits(sim)
self.writer.add_scalars('data/Hits@N', {'Hits@1 sr': top_lr[0],
'Hits@10 sr': top_lr[1],
'Hits@1 tg': top_rl[0],
'Hits@10 tg': top_rl[1]},
self.now_epoch)
self.writer.add_scalars('data/Rank', {'MR sr': mr_lr,
'MRR sr': mrr_lr,
'MR tg': mr_rl,
'MRR tg': mrr_rl},
self.now_epoch)
if top_lr[0] + top_rl[0] > self.best_hits_1[1] + self.best_hits_1[2]:
self.best_hits_1 = (self.now_epoch, top_lr[0], top_rl[0])
self.bad_result = 0
else:
self.bad_result += 1
print_time_info('Current best Hits@1 at the %dth epoch: (%.2f, %.2f)' % (self.best_hits_1))
def print_parameter(self, file=None):
parameters = self.__dict__
print_time_info('Parameter setttings:', dash_top=True, file=file)
print('\tNet: ', type(self.net).__name__, file=file)
for key, value in parameters.items():
if type(value) in {int, float, str, bool}:
print('\t%s:' % key, value, file=file)
print('---------------------------------------', file=file)
def init_log(self, log_dir):
log_dir = Path(log_dir)
if log_dir.exists():
print('Warning: we will remove %s' % (str(log_dir)))
shutil.rmtree(str(log_dir))
log_dir.mkdir()
comment = log_dir.name
self.writer = SummaryWriter(str(log_dir))
with open(log_dir / 'parameters.txt', 'w') as f:
print_time_info(comment, file=f)
self.print_parameter(f)
print_time_info('Successfully initialized log in "%s" directory!' % log_dir)
def set_cuda(self, is_cuda):
self.is_cuda = is_cuda
def set_net(self):
self.net = GATNet(self.rule_scale, self.cgc, self.num_layer, self.embedding_dim, self.nheads, self.alpha,
self.rule_infer, self.w_adj, self.dropout_rate, self.non_acylic, self.is_cuda)
def set_graph_completion(self, graph_completion):
self.graph_completion = graph_completion
def set_learning_rate(self, learning_rate):
self.lr = learning_rate
def set_dropout(self, dropout):
self.dropout_rate = dropout
def set_align_gamma(self, align_gamma):
self.align_gamma = align_gamma
def set_rule_gamma(self, rule_gamma):
self.rule_gamma = rule_gamma
def set_dim(self, dim):
self.embedding_dim = dim
def set_nheads(self, nheads):
self.nheads = nheads
def set_l2_penalty(self, l2_penalty):
self.l2_penalty = l2_penalty
def set_num_layer(self, num_layer):
self.num_layer = num_layer
def set_optimizer(self, optimizer):
self.optimizer = optimizer
def set_batch_size(self, batch_size):
self.batch_size = batch_size
def set_num_workers(self, num_workers):
self.num_workers = num_workers
def set_beta(self, beta):
self.beta = beta
def set_update_cycle(self, update_cycle):
self.update_cycle = update_cycle
def set_w_adj(self, w_adj):
self.w_adj = w_adj
def set_rule_infer(self, rule_infer):
self.rule_infer = rule_infer
def set_bootstrap(self, bootstrap):
self.train_bootstrap = bootstrap
def set_train_seed_ratio(self, seed_ratio):
self.train_seeds_ratio = seed_ratio
def set_rule_transfer(self, rule_transfer):
self.rule_transfer = rule_transfer
def set_rel_align_gamma(self, rel_align_gamma):
self.rel_align_gamma = rel_align_gamma