forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
unary.h
443 lines (359 loc) · 16.3 KB
/
unary.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
// See Note [ Why still include the fluid headers? ]
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
class MetaConfig;
// Common InferMeta Functions for unary operators, The format like:
//
// void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
// out) {}
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
//
// The InferMeta Functions in this file are arranged in alphabetic order.
void ArgMinMaxInferMeta(const MetaTensor& x,
int64_t axis,
bool keepdims,
bool flatten,
int dtype,
MetaTensor* out,
MetaConfig config = MetaConfig());
void ArgsortInferMeta(const MetaTensor& input,
int axis,
bool descending,
MetaTensor* output,
MetaTensor* indices);
void BatchSizeLikeInferMeta(const MetaTensor& x,
const std::vector<int>& shape,
int x_batch_size_dim,
int out_batch_size_dim,
MetaTensor* out);
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
void CumInferMeta(const MetaTensor& x,
int axis,
bool flatten,
bool exclusive,
bool reverse,
MetaTensor* out);
void DiagInferMeta(const MetaTensor& x,
int offset,
float padding_value,
MetaTensor* out);
void DiagonalInferMeta(
const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);
void EighInferMeta(const MetaTensor& x,
const std::string& uplo,
MetaTensor* out_w,
MetaTensor* out_v);
void ExpandInferMeta(const MetaTensor& x,
const IntArray& shape,
MetaTensor* out);
void FlattenInferMeta(const MetaTensor& x,
int start_axis,
int stop_axis,
MetaTensor* out);
void FlattenWithXShapeInferMeta(const MetaTensor& x,
int start_axis,
int stop_axis,
MetaTensor* out,
MetaTensor* xshape);
void FlipInferMeta(const MetaTensor& x,
const std::vector<int>& axis,
MetaTensor* out);
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
const std::vector<int>& shape,
const Scalar& val,
DataType dtype,
int x_batch_size_dim,
int out_batch_size_dim,
MetaTensor* out);
void GumbelSoftmaxInferMeta(const MetaTensor& x,
float temperature,
bool hard,
int axis,
MetaTensor* out);
void HistogramInferMeta(
const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);
void InferMetaFromVecValue(const MetaTensor& x,
const std::vector<int64_t>& shape,
MetaTensor* out);
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);
void KthvalueInferMeta(const MetaTensor& x,
int k,
int axis,
bool keepdim,
MetaTensor* out,
MetaTensor* indices,
MetaConfig = MetaConfig());
void LogsumexpInferMeta(const MetaTensor& input,
const std::vector<int64_t>& axis,
bool keepdim,
bool reduce_all,
MetaTensor* out);
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);
void MatrixRankInferMeta(const MetaTensor& x,
bool use_default_tol,
bool hermitian,
MetaTensor* out);
void MaxOutInferMeta(const MetaTensor& x,
int groups,
int axis,
MetaTensor* out);
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
const std::vector<int>& kernel_size,
const std::vector<int>& strides,
const std::vector<int>& paddings,
bool global_pooling,
bool adaptive,
MetaTensor* out,
MetaTensor* mask,
MetaConfig config = MetaConfig());
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);
void ModeInferMeta(const MetaTensor& x,
int axis,
bool keepdim,
MetaTensor* out,
MetaTensor* indices);
void MultinomialInferMeta(const MetaTensor& x,
int num_samples,
bool replacement,
MetaTensor* out);
void NormInferMeta(const MetaTensor& x,
int axis,
float epsilon,
bool is_test,
MetaTensor* out,
MetaTensor* norm);
void PadInferMeta(const MetaTensor& input,
const std::vector<int>& paddings,
float pad_value,
MetaTensor* out,
MetaConfig config = MetaConfig());
void Pad3dInferMeta(const MetaTensor& x,
const IntArray& paddings,
const std::string& mode,
float value,
const std::string& data_format,
MetaTensor* out,
MetaConfig config = MetaConfig());
void PixelShuffleInferMeta(const MetaTensor& x,
int upscale_factor,
const std::string& data_format,
MetaTensor* out);
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
int upscale_factor,
const std::string& data_format,
MetaTensor* x_grad);
void PNormInferMeta(const MetaTensor& x,
float porder,
int axis,
float epsilon,
bool keepdim,
bool asvector,
MetaTensor* out);
void PoolInferMeta(const MetaTensor& x,
const std::vector<int>& kernel_size,
const std::vector<int>& strides,
const std::vector<int>& paddings,
bool ceil_mode,
bool exclusive,
const std::string& data_format,
const std::string& pooling_type,
bool global_pooling,
bool adaptive,
const std::string& padding_algorithm,
MetaTensor* out,
MetaConfig config = MetaConfig());
void QrInferMeta(const MetaTensor& x,
const std::string& mode,
MetaTensor* q,
MetaTensor* r);
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);
void ReduceInferMeta(const MetaTensor& x,
const std::vector<int64_t>& axis,
bool keep_dim,
MetaTensor* out);
void ReduceInferMetaBase(const MetaTensor& x,
const std::vector<int64_t>& axis,
bool keep_dim,
bool reduce_all,
MetaTensor* out);
void ReshapeInferMeta(const MetaTensor& x,
const IntArray& shape,
MetaTensor* out,
MetaConfig config = MetaConfig());
void ReshapeWithXShapeInferMeta(const MetaTensor& x,
const IntArray& shape,
MetaTensor* out,
MetaTensor* xshape,
MetaConfig config = MetaConfig());
void ReverseInferMeta(const MetaTensor& x,
const std::vector<int>& axis,
MetaTensor* out);
void RollInferMeta(const MetaTensor& x,
const IntArray& shifts,
const std::vector<int64_t>& axis,
MetaTensor* out);
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);
void ShardIndexInferMeta(const MetaTensor& in,
int index_num,
int nshards,
int shard_id,
int ignore_value,
MetaTensor* out,
MetaConfig config = MetaConfig());
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
void SliceRawInferMeta(const MetaTensor& input,
const std::vector<int64_t>& axes,
const IntArray& starts,
const IntArray& ends,
const std::vector<int64_t>& infer_flags,
const std::vector<int64_t>& decrease_axis,
MetaTensor* out,
MetaConfig config = MetaConfig());
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
void SplitInferMeta(const MetaTensor& x_meta,
const IntArray& num_or_sections,
const Scalar& axis,
std::vector<MetaTensor*> out,
MetaConfig config = MetaConfig());
void SqueezeInferMeta(const MetaTensor& x,
const std::vector<int>& axes,
MetaTensor* xshape,
MetaTensor* out);
void StridedSliceRawInferMeta(const MetaTensor& x,
const std::vector<int>& axes,
const IntArray& starts,
const IntArray& ends,
const IntArray& strides,
const std::vector<int>& infer_flags,
const std::vector<int>& decrease_axis,
MetaTensor* out,
MetaConfig config = MetaConfig());
void StridedSliceInferMeta(const MetaTensor& x,
const std::vector<int>& axes,
const IntArray& starts,
const IntArray& ends,
const IntArray& strides,
MetaTensor* out,
MetaConfig config = MetaConfig());
void SumInferMeta(const MetaTensor& x,
const std::vector<int64_t>& axis,
DataType dtype,
bool keep_dim,
MetaTensor* out);
void SumRawInferMeta(const MetaTensor& x,
const std::vector<int64_t>& axis,
bool keep_dim,
bool reduce_all,
DataType dtype,
MetaTensor* out);
void TemporalShiftInferMeta(const MetaTensor& x,
int seg_num,
float shift_ratio,
const std::string& data_format,
MetaTensor* out,
MetaConfig config = MetaConfig());
void TileInferMeta(const MetaTensor& x,
const IntArray& repeat_times,
MetaTensor* out,
MetaConfig config = MetaConfig());
void TopKInferMeta(const MetaTensor& x,
const Scalar& k_scalar,
int axis,
bool largest,
bool sorted,
MetaTensor* out,
MetaTensor* indices,
MetaConfig config = MetaConfig());
void TraceInferMeta(
const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);
void TransferLayoutInferMeta(const MetaTensor& x,
DataLayout layout,
MetaTensor* out);
void TransposeInferMeta(const MetaTensor& x,
const std::vector<int>& axis,
MetaTensor* out);
void TransposeGradInferMeta(const MetaTensor& x,
const std::vector<int>& axis,
MetaTensor* out);
void TrilTriuInferMeta(const MetaTensor& x,
int diagonal,
bool lower,
MetaTensor* out);
void UnbindInferMeta(const MetaTensor& x,
int axis,
std::vector<MetaTensor*> outs);
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
int axis,
MetaTensor* out);
void UnfoldInferMeta(const MetaTensor& x,
const std::vector<int>& kernel_sizes,
const std::vector<int>& strides,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
MetaTensor* out,
MetaConfig config = MetaConfig());
void UniqueInferMeta(const MetaTensor& x,
bool return_index,
bool return_inverse,
bool return_counts,
const std::vector<int>& axis,
DataType dtype,
MetaTensor* out,
MetaTensor* indices,
MetaTensor* index,
MetaTensor* counts);
void UniqueRawInferMeta(const MetaTensor& x,
bool return_index,
bool return_inverse,
bool return_counts,
const std::vector<int>& axis,
DataType dtype,
bool is_sorted,
MetaTensor* out,
MetaTensor* indices,
MetaTensor* index,
MetaTensor* counts);
void UnsqueezeInferMeta(const MetaTensor& x,
const IntArray& axes,
MetaTensor* xshape,
MetaTensor* out,
MetaConfig config = MetaConfig());
void UnStackInferMeta(const MetaTensor& x,
int axis,
int num,
std::vector<MetaTensor*> outs);
void OneHotRawInferMeta(const MetaTensor& x,
int32_t depth,
DataType dtype,
bool allow_out_of_range,
MetaTensor* out);
void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);
void ChannelShuffleInferMeta(const MetaTensor& x,
int groups,
const std::string& data_format,
MetaTensor* out);
} // namespace phi