forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cum_op.cc
168 lines (151 loc) · 6.73 KB
/
cum_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace paddle {
namespace operators {
class CumOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
};
class CumsumOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "Input of cumsum operator");
AddOutput("Out", "Output of cumsum operator");
AddAttr<int>("axis",
"The dimension to accumulate along. -1 means the last "
"dimension [default -1].")
.SetDefault(-1);
AddAttr<bool>("flatten",
"Whether to compute the cumsum over the flattened array. "
"[default false].")
.SetDefault(false);
AddAttr<bool>("exclusive",
"Whether to perform exclusive cumsum. [default false].")
.SetDefault(false);
AddAttr<bool>("reverse",
"If true, the cumsum is performed in the reversed direction. "
"[default false].")
.SetDefault(false);
AddComment(R"DOC(
The cumulative sum of the elements along a given axis.
By default, the first element of the result is the same of the first element of
the input. If exclusive is true, the first element of the result is 0.
)DOC");
}
};
template <typename T>
class CumsumGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("cumsum");
grad_op->SetInput("X", this->OutputGrad("Out"));
grad_op->SetOutput("Out", this->InputGrad("X"));
grad_op->SetAttr("axis", BOOST_GET_CONST(int, this->GetAttr("axis")));
grad_op->SetAttr("flatten",
BOOST_GET_CONST(bool, this->GetAttr("flatten")));
grad_op->SetAttr("reverse",
!BOOST_GET_CONST(bool, this->GetAttr("reverse")));
grad_op->SetAttr("exclusive",
BOOST_GET_CONST(bool, this->GetAttr("exclusive")));
}
};
class LogcumsumexpOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "Input of logcumsumexp operator");
AddOutput("Out", "Output of logcumsumexp operator");
AddAttr<int>("axis",
"The dimension to accumulate along. -1 means the last "
"dimension [default -1].")
.SetDefault(-1);
AddAttr<bool>("flatten",
"Whether to compute the logcumsumexp over the flattened array. "
"[default false].")
.SetDefault(false);
AddAttr<bool>("exclusive",
"Whether to perform exclusive logcumsumexp. [default false].")
.SetDefault(false);
AddAttr<bool>("reverse",
"If true, the logcumsumexp is performed in the reversed direction. "
"[default false].")
.SetDefault(false);
AddComment(R"DOC(
Returns the logarithm of the cumulative summation of the exponentiation of elements of input along the given axis.
By default, the first element of the result is the same of the first element of
the input. If exclusive is true, the first element of the result is the lowest finite value of the dtype of output tensor.
)DOC");
}
};
class LogcumsumexpGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "logcumsumexp");
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "logcumsumexp");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@GRAD", "logcumsumexp");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
template <typename T>
class LogcumsumexpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("logcumsumexp_grad");
grad_op->SetInput("X", this->Input("X"));
grad_op->SetInput("Out", this->Output("Out"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
grad_op->SetAttr("axis", BOOST_GET_CONST(int, this->GetAttr("axis")));
grad_op->SetAttr("flatten",
BOOST_GET_CONST(bool, this->GetAttr("flatten")));
grad_op->SetAttr("exclusive",
BOOST_GET_CONST(bool, this->GetAttr("exclusive")));
grad_op->SetAttr("reverse",
BOOST_GET_CONST(bool, this->GetAttr("reverse")));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;
DECLARE_INFER_SHAPE_FUNCTOR(cumsum, CumsumInferShapeFunctor,
PD_INFER_META(phi::CumInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(logcumsumexp, LogcumsumexpInferShapeFunctor,
PD_INFER_META(phi::CumInferMeta));
REGISTER_OPERATOR(cumsum, ops::CumOp, ops::CumsumOpMaker,
ops::CumsumGradMaker<paddle::framework::OpDesc>,
ops::CumsumGradMaker<paddle::imperative::OpBase>,
CumsumInferShapeFunctor);
REGISTER_OPERATOR(logcumsumexp, ops::CumOp, ops::LogcumsumexpOpMaker,
ops::LogcumsumexpGradMaker<paddle::framework::OpDesc>,
ops::LogcumsumexpGradMaker<paddle::imperative::OpBase>,
LogcumsumexpInferShapeFunctor);
REGISTER_OPERATOR(logcumsumexp_grad, ops::LogcumsumexpGradOp);
REGISTER_OP_VERSION(cumsum)
.AddCheckpoint(
R"ROC(
Upgrade cumsum add a new attribute [flatten].
)ROC",
paddle::framework::compatible::OpVersionDesc().NewAttr(
"flatten",
"In order to compute the cumsum over the flattened array when the "
"argument `axis` in python API is None.",
false));