Skip to content

This is a self driving car project of using Model Predictive Control algorithm to help car drive itself

Notifications You must be signed in to change notification settings

tiandiao123/MPC-Project

Repository files navigation

Project Memeber: Cuiqing Li

Time: August 2017

CarND-Controls-MPC (Self-Driving Car Project)


Project Description:

Model Predictive Controller attempts to approximate a continues reference trajectory by means of discrete paths between actuations, so I am applying MPC to let autonomous cars drive themselves from destination A to destination B. Here is a tutorial of MPC. Here is an amazing video for showing how Model predictive controller works!

My Project Final Review:

gif

Standard Project Result:

gif

Additional information for MPC and PID models:

  • In a real car, an actuation command won't execute instantly - there will be a delay as the command propagates through the system. A realistic delay might be on the order of 100 milliseconds. This is a problem called "latency", and it's a difficult challenge for some controllers - like a PID controller - to overcome. But a Model Predictive Controller can adapt quite well because we can model this latency in the system.

  • PID Controller:PID controllers will calculate the error with respect to the present state, but the actuation will be performed when the vehicle is in a future (and likely different) state. This can sometimes lead to instability.The PID controller could try to compute a control input based on a future error, but without a vehicle model it's unlikely this will be accurate.

  • Model Predictive Control: A contributing factor to latency is actuator dynamics. For example the time elapsed between when you command a steering angle to when that angle is actually achieved. This could easily be modeled by a simple dynamic system and incorporated into the vehicle model. One approach would be running a simulation using the vehicle model starting from the current state for the duration of the latency. The resulting state from the simulation is the new initial state for MPC. Thus, MPC can deal with latency much more effectively, by explicitly taking it into account, than a PID controller.

Dependencies

  • cmake >= 3.5
  • All OSes: click here for installation instructions
  • make >= 4.1
  • gcc/g++ >= 5.4
  • uWebSockets
    • Run either install-mac.sh or install-ubuntu.sh.
    • If you install from source, checkout to commit e94b6e1, i.e.
      git clone https://github.com/uWebSockets/uWebSockets 
      cd uWebSockets
      git checkout e94b6e1
      
      Some function signatures have changed in v0.14.x. See this PR for more details.
  • Fortran Compiler
    • Mac: brew install gcc (might not be required)
    • Linux: sudo apt-get install gfortran. Additionall you have also have to install gcc and g++, sudo apt-get install gcc g++. Look in this Dockerfile for more info.
  • Ipopt
    • Mac: brew install ipopt
      • Some Mac users have experienced the following error:
      Listening to port 4567
      Connected!!!
      mpc(4561,0x7ffff1eed3c0) malloc: *** error for object 0x7f911e007600: incorrect checksum for freed object
      - object was probably modified after being freed.
      *** set a breakpoint in malloc_error_break to debug
      
      This error has been resolved by updrading ipopt with brew upgrade ipopt --with-openblas per this forum post.
    • Linux
      • You will need a version of Ipopt 3.12.1 or higher. The version available through apt-get is 3.11.x. If you can get that version to work great but if not there's a script install_ipopt.sh that will install Ipopt. You just need to download the source from the Ipopt releases page or the Github releases page.
      • Then call install_ipopt.sh with the source directory as the first argument, ex: sudo bash install_ipopt.sh Ipopt-3.12.1.
    • Windows: TODO. If you can use the Linux subsystem and follow the Linux instructions.
  • CppAD
    • Mac: brew install cppad
    • Linux sudo apt-get install cppad or equivalent.
    • Windows: TODO. If you can use the Linux subsystem and follow the Linux instructions.
  • Eigen. This is already part of the repo so you shouldn't have to worry about it.
  • Simulator. You can download these from the releases tab.
  • Not a dependency but read the DATA.md for a description of the data sent back from the simulator.

Basic Build Instructions

1. Clone this repo.
2. Make a build directory: `mkdir build && cd build`
3. Compile: `cmake .. && make`
4. Run it: `./mpc`.

Tips

  1. It's recommended to test the MPC on basic examples to see if your implementation behaves as desired. One possible example is the vehicle starting offset of a straight line (reference). If the MPC implementation is correct, after some number of timesteps (not too many) it should find and track the reference line.
  2. The lake_track_waypoints.csv file has the waypoints of the lake track. You could use this to fit polynomials and points and see of how well your model tracks curve. NOTE: This file might be not completely in sync with the simulator so your solution should NOT depend on it.
  3. For visualization this C++ matplotlib wrapper could be helpful.

Editor Settings

We've purposefully kept editor configuration files out of this repo in order to keep it as simple and environment agnostic as possible. However, we recommend using the following settings:

  • indent using spaces
  • set tab width to 2 spaces (keeps the matrices in source code aligned)

Code Style

Please (do your best to) stick to Google's C++ style guide.

Project Instructions and Rubric

Note: regardless of the changes you make, your project must be buildable using cmake and make!

More information is only accessible by people who are already enrolled in Term 2 of CarND. If you are enrolled, see the project page for instructions and the project rubric.

Call for IDE Profiles Pull Requests

Help your fellow students!

We decided to create Makefiles with cmake to keep this project as platform agnostic as possible. Similarly, we omitted IDE profiles in order to we ensure that students don't feel pressured to use one IDE or another.

However! I'd love to help people get up and running with their IDEs of choice. If you've created a profile for an IDE that you think other students would appreciate, we'd love to have you add the requisite profile files and instructions to ide_profiles/. For example if you wanted to add a VS Code profile, you'd add:

  • /ide_profiles/vscode/.vscode
  • /ide_profiles/vscode/README.md

The README should explain what the profile does, how to take advantage of it, and how to install it.

Frankly, I've never been involved in a project with multiple IDE profiles before. I believe the best way to handle this would be to keep them out of the repo root to avoid clutter. My expectation is that most profiles will include instructions to copy files to a new location to get picked up by the IDE, but that's just a guess.

One last note here: regardless of the IDE used, every submitted project must still be compilable with cmake and make./

About

This is a self driving car project of using Model Predictive Control algorithm to help car drive itself

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published