forked from google-research/albert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modeling.py
1208 lines (1041 loc) · 45 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 The Google AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The main ALBERT model and related functions.
For a description of the algorithm, see https://arxiv.org/abs/1909.11942.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import copy
import json
import math
import re
import numpy as np
import six
from six.moves import range
import tensorflow.compat.v1 as tf
from tensorflow.contrib import layers as contrib_layers
class AlbertConfig(object):
"""Configuration for `AlbertModel`.
The default settings match the configuration of model `albert_xxlarge`.
"""
def __init__(self,
vocab_size,
embedding_size=128,
hidden_size=4096,
num_hidden_layers=12,
num_hidden_groups=1,
num_attention_heads=64,
intermediate_size=16384,
inner_group_num=1,
down_scale_factor=1,
hidden_act="gelu",
hidden_dropout_prob=0,
attention_probs_dropout_prob=0,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02):
"""Constructs AlbertConfig.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `AlbertModel`.
embedding_size: size of voc embeddings.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_hidden_groups: Number of group for the hidden layers, parameters in
the same group are shared.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
inner_group_num: int, number of inner repetition of attention and ffn.
down_scale_factor: float, the scale to apply
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler.
hidden_dropout_prob: The dropout probability for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`AlbertModel`.
initializer_range: The stdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_hidden_groups = num_hidden_groups
self.num_attention_heads = num_attention_heads
self.inner_group_num = inner_group_num
self.down_scale_factor = down_scale_factor
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
@classmethod
def from_dict(cls, json_object):
"""Constructs a `AlbertConfig` from a Python dictionary of parameters."""
config = AlbertConfig(vocab_size=None)
for (key, value) in six.iteritems(json_object):
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `AlbertConfig` from a json file of parameters."""
with tf.gfile.GFile(json_file, "r") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class AlbertModel(object):
"""BERT model ("Bidirectional Encoder Representations from Transformers").
Example usage:
```python
# Already been converted from strings into ids
input_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
token_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])
config = modeling.AlbertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
model = modeling.AlbertModel(config=config, is_training=True,
input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids)
label_embeddings = tf.get_variable(...)
pooled_output = model.get_pooled_output()
logits = tf.matmul(pooled_output, label_embeddings)
...
```
"""
def __init__(self,
config,
is_training,
input_ids,
input_mask=None,
token_type_ids=None,
use_one_hot_embeddings=False,
use_einsum=True,
scope=None):
"""Constructor for AlbertModel.
Args:
config: `AlbertConfig` instance.
is_training: bool. true for training model, false for eval model. Controls
whether dropout will be applied.
input_ids: int32 Tensor of shape [batch_size, seq_length].
input_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
use_one_hot_embeddings: (optional) bool. Whether to use one-hot word
embeddings or tf.embedding_lookup() for the word embeddings.
use_einsum: (optional) bool. Whether to use einsum or reshape+matmul for
dense layers
scope: (optional) variable scope. Defaults to "bert".
Raises:
ValueError: The config is invalid or one of the input tensor shapes
is invalid.
"""
config = copy.deepcopy(config)
if not is_training:
config.hidden_dropout_prob = 0.0
config.attention_probs_dropout_prob = 0.0
input_shape = get_shape_list(input_ids, expected_rank=2)
batch_size = input_shape[0]
seq_length = input_shape[1]
if input_mask is None:
input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
if token_type_ids is None:
token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
with tf.variable_scope(scope, default_name="bert"):
with tf.variable_scope("embeddings"):
# Perform embedding lookup on the word ids.
(self.word_embedding_output,
self.output_embedding_table) = embedding_lookup(
input_ids=input_ids,
vocab_size=config.vocab_size,
embedding_size=config.embedding_size,
initializer_range=config.initializer_range,
word_embedding_name="word_embeddings",
use_one_hot_embeddings=use_one_hot_embeddings)
# Add positional embeddings and token type embeddings, then layer
# normalize and perform dropout.
self.embedding_output = embedding_postprocessor(
input_tensor=self.word_embedding_output,
use_token_type=True,
token_type_ids=token_type_ids,
token_type_vocab_size=config.type_vocab_size,
token_type_embedding_name="token_type_embeddings",
use_position_embeddings=True,
position_embedding_name="position_embeddings",
initializer_range=config.initializer_range,
max_position_embeddings=config.max_position_embeddings,
dropout_prob=config.hidden_dropout_prob,
use_one_hot_embeddings=use_one_hot_embeddings)
with tf.variable_scope("encoder"):
# Run the stacked transformer.
# `sequence_output` shape = [batch_size, seq_length, hidden_size].
self.all_encoder_layers = transformer_model(
input_tensor=self.embedding_output,
attention_mask=input_mask,
hidden_size=config.hidden_size,
num_hidden_layers=config.num_hidden_layers,
num_hidden_groups=config.num_hidden_groups,
num_attention_heads=config.num_attention_heads,
intermediate_size=config.intermediate_size,
inner_group_num=config.inner_group_num,
intermediate_act_fn=get_activation(config.hidden_act),
hidden_dropout_prob=config.hidden_dropout_prob,
attention_probs_dropout_prob=config.attention_probs_dropout_prob,
initializer_range=config.initializer_range,
do_return_all_layers=True,
use_einsum=use_einsum)
self.sequence_output = self.all_encoder_layers[-1]
# The "pooler" converts the encoded sequence tensor of shape
# [batch_size, seq_length, hidden_size] to a tensor of shape
# [batch_size, hidden_size]. This is necessary for segment-level
# (or segment-pair-level) classification tasks where we need a fixed
# dimensional representation of the segment.
with tf.variable_scope("pooler"):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token. We assume that this has been pre-trained
first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
self.pooled_output = tf.layers.dense(
first_token_tensor,
config.hidden_size,
activation=tf.tanh,
kernel_initializer=create_initializer(config.initializer_range))
def get_pooled_output(self):
return self.pooled_output
def get_sequence_output(self):
"""Gets final hidden layer of encoder.
Returns:
float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
to the final hidden of the transformer encoder.
"""
return self.sequence_output
def get_all_encoder_layers(self):
return self.all_encoder_layers
def get_word_embedding_output(self):
"""Get output of the word(piece) embedding lookup.
This is BEFORE positional embeddings and token type embeddings have been
added.
Returns:
float Tensor of shape [batch_size, seq_length, embedding_size]
corresponding to the output of the word(piece) embedding layer.
"""
return self.word_embedding_output
def get_embedding_output(self):
"""Gets output of the embedding lookup (i.e., input to the transformer).
Returns:
float Tensor of shape [batch_size, seq_length, embedding_size]
corresponding to the output of the embedding layer, after summing the word
embeddings with the positional embeddings and the token type embeddings,
then performing layer normalization. This is the input to the transformer.
"""
return self.embedding_output
def get_embedding_table(self):
return self.output_embedding_table
def gelu(x):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
x: float Tensor to perform activation.
Returns:
`x` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.tanh(
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
def get_activation(activation_string):
"""Maps a string to a Python function, e.g., "relu" => `tf.nn.relu`.
Args:
activation_string: String name of the activation function.
Returns:
A Python function corresponding to the activation function. If
`activation_string` is None, empty, or "linear", this will return None.
If `activation_string` is not a string, it will return `activation_string`.
Raises:
ValueError: The `activation_string` does not correspond to a known
activation.
"""
# We assume that anything that"s not a string is already an activation
# function, so we just return it.
if not isinstance(activation_string, six.string_types):
return activation_string
if not activation_string:
return None
act = activation_string.lower()
if act == "linear":
return None
elif act == "relu":
return tf.nn.relu
elif act == "gelu":
return gelu
elif act == "tanh":
return tf.tanh
else:
raise ValueError("Unsupported activation: %s" % act)
def get_assignment_map_from_checkpoint(tvars, init_checkpoint, num_of_group=0):
"""Compute the union of the current variables and checkpoint variables."""
assignment_map = {}
initialized_variable_names = {}
name_to_variable = collections.OrderedDict()
for var in tvars:
name = var.name
m = re.match("^(.*):\\d+$", name)
if m is not None:
name = m.group(1)
name_to_variable[name] = var
init_vars = tf.train.list_variables(init_checkpoint)
init_vars_name = [name for (name, _) in init_vars]
if num_of_group > 0:
assignment_map = []
for gid in range(num_of_group):
assignment_map.append(collections.OrderedDict())
else:
assignment_map = collections.OrderedDict()
for name in name_to_variable:
if name in init_vars_name:
tvar_name = name
elif (re.sub(r"/group_\d+/", "/group_0/",
six.ensure_str(name)) in init_vars_name and
num_of_group > 1):
tvar_name = re.sub(r"/group_\d+/", "/group_0/", six.ensure_str(name))
elif (re.sub(r"/ffn_\d+/", "/ffn_1/", six.ensure_str(name))
in init_vars_name and num_of_group > 1):
tvar_name = re.sub(r"/ffn_\d+/", "/ffn_1/", six.ensure_str(name))
elif (re.sub(r"/attention_\d+/", "/attention_1/", six.ensure_str(name))
in init_vars_name and num_of_group > 1):
tvar_name = re.sub(r"/attention_\d+/", "/attention_1/",
six.ensure_str(name))
else:
tf.logging.info("name %s does not get matched", name)
continue
tf.logging.info("name %s match to %s", name, tvar_name)
if num_of_group > 0:
group_matched = False
for gid in range(1, num_of_group):
if (("/group_" + str(gid) + "/" in name) or
("/ffn_" + str(gid) + "/" in name) or
("/attention_" + str(gid) + "/" in name)):
group_matched = True
tf.logging.info("%s belongs to %dth", name, gid)
assignment_map[gid][tvar_name] = name
if not group_matched:
assignment_map[0][tvar_name] = name
else:
assignment_map[tvar_name] = name
initialized_variable_names[name] = 1
initialized_variable_names[six.ensure_str(name) + ":0"] = 1
return (assignment_map, initialized_variable_names)
def dropout(input_tensor, dropout_prob):
"""Perform dropout.
Args:
input_tensor: float Tensor.
dropout_prob: Python float. The probability of dropping out a value (NOT of
*keeping* a dimension as in `tf.nn.dropout`).
Returns:
A version of `input_tensor` with dropout applied.
"""
if dropout_prob is None or dropout_prob == 0.0:
return input_tensor
output = tf.nn.dropout(input_tensor, rate=dropout_prob)
return output
def layer_norm(input_tensor, name=None):
"""Run layer normalization on the last dimension of the tensor."""
return contrib_layers.layer_norm(
inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name)
def layer_norm_and_dropout(input_tensor, dropout_prob, name=None):
"""Runs layer normalization followed by dropout."""
output_tensor = layer_norm(input_tensor, name)
output_tensor = dropout(output_tensor, dropout_prob)
return output_tensor
def create_initializer(initializer_range=0.02):
"""Creates a `truncated_normal_initializer` with the given range."""
return tf.truncated_normal_initializer(stddev=initializer_range)
def get_timing_signal_1d_given_position(channels,
position,
min_timescale=1.0,
max_timescale=1.0e4):
"""Get sinusoids of diff frequencies, with timing position given.
Adapted from add_timing_signal_1d_given_position in
//third_party/py/tensor2tensor/layers/common_attention.py
Args:
channels: scalar, size of timing embeddings to create. The number of
different timescales is equal to channels / 2.
position: a Tensor with shape [batch, seq_len]
min_timescale: a float
max_timescale: a float
Returns:
a Tensor of timing signals [batch, seq_len, channels]
"""
num_timescales = channels // 2
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.to_float(num_timescales) - 1))
inv_timescales = min_timescale * tf.exp(
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = (
tf.expand_dims(tf.to_float(position), 2) * tf.expand_dims(
tf.expand_dims(inv_timescales, 0), 0))
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=2)
signal = tf.pad(signal, [[0, 0], [0, 0], [0, tf.mod(channels, 2)]])
return signal
def embedding_lookup(input_ids,
vocab_size,
embedding_size=128,
initializer_range=0.02,
word_embedding_name="word_embeddings",
use_one_hot_embeddings=False):
"""Looks up words embeddings for id tensor.
Args:
input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
ids.
vocab_size: int. Size of the embedding vocabulary.
embedding_size: int. Width of the word embeddings.
initializer_range: float. Embedding initialization range.
word_embedding_name: string. Name of the embedding table.
use_one_hot_embeddings: bool. If True, use one-hot method for word
embeddings. If False, use `tf.nn.embedding_lookup()`.
Returns:
float Tensor of shape [batch_size, seq_length, embedding_size].
"""
# This function assumes that the input is of shape [batch_size, seq_length,
# num_inputs].
#
# If the input is a 2D tensor of shape [batch_size, seq_length], we
# reshape to [batch_size, seq_length, 1].
if input_ids.shape.ndims == 2:
input_ids = tf.expand_dims(input_ids, axis=[-1])
embedding_table = tf.get_variable(
name=word_embedding_name,
shape=[vocab_size, embedding_size],
initializer=create_initializer(initializer_range))
if use_one_hot_embeddings:
flat_input_ids = tf.reshape(input_ids, [-1])
one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
output = tf.matmul(one_hot_input_ids, embedding_table)
else:
output = tf.nn.embedding_lookup(embedding_table, input_ids)
input_shape = get_shape_list(input_ids)
output = tf.reshape(output,
input_shape[0:-1] + [input_shape[-1] * embedding_size])
return (output, embedding_table)
def embedding_postprocessor(input_tensor,
use_token_type=False,
token_type_ids=None,
token_type_vocab_size=16,
token_type_embedding_name="token_type_embeddings",
use_position_embeddings=True,
position_embedding_name="position_embeddings",
initializer_range=0.02,
max_position_embeddings=512,
dropout_prob=0.1,
use_one_hot_embeddings=True):
"""Performs various post-processing on a word embedding tensor.
Args:
input_tensor: float Tensor of shape [batch_size, seq_length,
embedding_size].
use_token_type: bool. Whether to add embeddings for `token_type_ids`.
token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
Must be specified if `use_token_type` is True.
token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
token_type_embedding_name: string. The name of the embedding table variable
for token type ids.
use_position_embeddings: bool. Whether to add position embeddings for the
position of each token in the sequence.
position_embedding_name: string. The name of the embedding table variable
for positional embeddings.
initializer_range: float. Range of the weight initialization.
max_position_embeddings: int. Maximum sequence length that might ever be
used with this model. This can be longer than the sequence length of
input_tensor, but cannot be shorter.
dropout_prob: float. Dropout probability applied to the final output tensor.
use_one_hot_embeddings: bool. If True, use one-hot method for word
embeddings. If False, use `tf.nn.embedding_lookup()`.
Returns:
float tensor with same shape as `input_tensor`.
Raises:
ValueError: One of the tensor shapes or input values is invalid.
"""
input_shape = get_shape_list(input_tensor, expected_rank=3)
batch_size = input_shape[0]
seq_length = input_shape[1]
width = input_shape[2]
output = input_tensor
if use_token_type:
if token_type_ids is None:
raise ValueError("`token_type_ids` must be specified if"
"`use_token_type` is True.")
token_type_table = tf.get_variable(
name=token_type_embedding_name,
shape=[token_type_vocab_size, width],
initializer=create_initializer(initializer_range))
# This vocab will be small so we always do one-hot here, since it is always
# faster for a small vocabulary, unless converting to tflite model.
if use_one_hot_embeddings:
flat_token_type_ids = tf.reshape(token_type_ids, [-1])
one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
token_type_embeddings = tf.reshape(token_type_embeddings,
[batch_size, seq_length, width])
else:
token_type_embeddings = tf.nn.embedding_lookup(token_type_table,
token_type_ids)
output += token_type_embeddings
if use_position_embeddings:
assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
with tf.control_dependencies([assert_op]):
full_position_embeddings = tf.get_variable(
name=position_embedding_name,
shape=[max_position_embeddings, width],
initializer=create_initializer(initializer_range))
# Since the position embedding table is a learned variable, we create it
# using a (long) sequence length `max_position_embeddings`. The actual
# sequence length might be shorter than this, for faster training of
# tasks that do not have long sequences.
#
# So `full_position_embeddings` is effectively an embedding table
# for position [0, 1, 2, ..., max_position_embeddings-1], and the current
# sequence has positions [0, 1, 2, ... seq_length-1], so we can just
# perform a slice.
position_embeddings = tf.slice(full_position_embeddings, [0, 0],
[seq_length, -1])
num_dims = len(output.shape.as_list())
# Only the last two dimensions are relevant (`seq_length` and `width`), so
# we broadcast among the first dimensions, which is typically just
# the batch size.
position_broadcast_shape = []
for _ in range(num_dims - 2):
position_broadcast_shape.append(1)
position_broadcast_shape.extend([seq_length, width])
position_embeddings = tf.reshape(position_embeddings,
position_broadcast_shape)
output += position_embeddings
output = layer_norm_and_dropout(output, dropout_prob)
return output
def einsum_via_matmul(input_tensor, w, num_inner_dims):
"""Implements einsum via matmul and reshape ops.
Args:
input_tensor: float Tensor of shape [<batch_dims>, <inner_dims>].
w: float Tensor of shape [<inner_dims>, <outer_dims>].
num_inner_dims: int. number of dimensions to use for inner products.
Returns:
float Tensor of shape [<batch_dims>, <outer_dims>].
"""
input_shape = get_shape_list(input_tensor)
w_shape = get_shape_list(w)
batch_dims = input_shape[: -num_inner_dims]
inner_dims = input_shape[-num_inner_dims:]
outer_dims = w_shape[num_inner_dims:]
inner_dim = np.prod(inner_dims)
outer_dim = np.prod(outer_dims)
if num_inner_dims > 1:
input_tensor = tf.reshape(input_tensor, batch_dims + [inner_dim])
if len(w_shape) > 2:
w = tf.reshape(w, [inner_dim, outer_dim])
ret = tf.matmul(input_tensor, w)
if len(outer_dims) > 1:
ret = tf.reshape(ret, batch_dims + outer_dims)
return ret
def dense_layer_3d(input_tensor,
num_attention_heads,
head_size,
initializer,
activation,
use_einsum,
name=None):
"""A dense layer with 3D kernel.
Args:
input_tensor: float Tensor of shape [batch, seq_length, hidden_size].
num_attention_heads: Number of attention heads.
head_size: The size per attention head.
initializer: Kernel initializer.
activation: Actication function.
use_einsum: bool. Whether to use einsum or reshape+matmul for dense layers.
name: The name scope of this layer.
Returns:
float logits Tensor.
"""
input_shape = get_shape_list(input_tensor)
hidden_size = input_shape[2]
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
shape=[hidden_size, num_attention_heads * head_size],
initializer=initializer)
w = tf.reshape(w, [hidden_size, num_attention_heads, head_size])
b = tf.get_variable(
name="bias",
shape=[num_attention_heads * head_size],
initializer=tf.zeros_initializer)
b = tf.reshape(b, [num_attention_heads, head_size])
if use_einsum:
ret = tf.einsum("BFH,HND->BFND", input_tensor, w)
else:
ret = einsum_via_matmul(input_tensor, w, 1)
ret += b
if activation is not None:
return activation(ret)
else:
return ret
def dense_layer_3d_proj(input_tensor,
hidden_size,
head_size,
initializer,
activation,
use_einsum,
name=None):
"""A dense layer with 3D kernel for projection.
Args:
input_tensor: float Tensor of shape [batch,from_seq_length,
num_attention_heads, size_per_head].
hidden_size: The size of hidden layer.
head_size: The size of head.
initializer: Kernel initializer.
activation: Actication function.
use_einsum: bool. Whether to use einsum or reshape+matmul for dense layers.
name: The name scope of this layer.
Returns:
float logits Tensor.
"""
input_shape = get_shape_list(input_tensor)
num_attention_heads = input_shape[2]
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
shape=[num_attention_heads * head_size, hidden_size],
initializer=initializer)
w = tf.reshape(w, [num_attention_heads, head_size, hidden_size])
b = tf.get_variable(
name="bias", shape=[hidden_size], initializer=tf.zeros_initializer)
if use_einsum:
ret = tf.einsum("BFND,NDH->BFH", input_tensor, w)
else:
ret = einsum_via_matmul(input_tensor, w, 2)
ret += b
if activation is not None:
return activation(ret)
else:
return ret
def dense_layer_2d(input_tensor,
output_size,
initializer,
activation,
use_einsum,
num_attention_heads=1,
name=None):
"""A dense layer with 2D kernel.
Args:
input_tensor: Float tensor with rank 3.
output_size: The size of output dimension.
initializer: Kernel initializer.
activation: Activation function.
use_einsum: bool. Whether to use einsum or reshape+matmul for dense layers.
num_attention_heads: number of attention head in attention layer.
name: The name scope of this layer.
Returns:
float logits Tensor.
"""
del num_attention_heads # unused
input_shape = get_shape_list(input_tensor)
hidden_size = input_shape[2]
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
shape=[hidden_size, output_size],
initializer=initializer)
b = tf.get_variable(
name="bias", shape=[output_size], initializer=tf.zeros_initializer)
if use_einsum:
ret = tf.einsum("BFH,HO->BFO", input_tensor, w)
else:
ret = tf.matmul(input_tensor, w)
ret += b
if activation is not None:
return activation(ret)
else:
return ret
def dot_product_attention(q, k, v, bias, dropout_rate=0.0):
"""Dot-product attention.
Args:
q: Tensor with shape [..., length_q, depth_k].
k: Tensor with shape [..., length_kv, depth_k]. Leading dimensions must
match with q.
v: Tensor with shape [..., length_kv, depth_v] Leading dimensions must
match with q.
bias: bias Tensor (see attention_bias())
dropout_rate: a float.
Returns:
Tensor with shape [..., length_q, depth_v].
"""
logits = tf.matmul(q, k, transpose_b=True) # [..., length_q, length_kv]
logits = tf.multiply(logits, 1.0 / math.sqrt(float(get_shape_list(q)[-1])))
if bias is not None:
# `attention_mask` = [B, T]
from_shape = get_shape_list(q)
if len(from_shape) == 4:
broadcast_ones = tf.ones([from_shape[0], 1, from_shape[2], 1], tf.float32)
elif len(from_shape) == 5:
# from_shape = [B, N, Block_num, block_size, depth]#
broadcast_ones = tf.ones([from_shape[0], 1, from_shape[2], from_shape[3],
1], tf.float32)
bias = tf.matmul(broadcast_ones,
tf.cast(bias, tf.float32), transpose_b=True)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
adder = (1.0 - bias) * -10000.0
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
logits += adder
else:
adder = 0.0
attention_probs = tf.nn.softmax(logits, name="attention_probs")
attention_probs = dropout(attention_probs, dropout_rate)
return tf.matmul(attention_probs, v)
def attention_layer(from_tensor,
to_tensor,
attention_mask=None,
num_attention_heads=1,
query_act=None,
key_act=None,
value_act=None,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
batch_size=None,
from_seq_length=None,
to_seq_length=None,
use_einsum=True):
"""Performs multi-headed attention from `from_tensor` to `to_tensor`.
Args:
from_tensor: float Tensor of shape [batch_size, from_seq_length,
from_width].
to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
The values should be 1 or 0. The attention scores will effectively
be set to -infinity for any positions in the mask that are 0, and
will be unchanged for positions that are 1.
num_attention_heads: int. Number of attention heads.
query_act: (optional) Activation function for the query transform.
key_act: (optional) Activation function for the key transform.
value_act: (optional) Activation function for the value transform.
attention_probs_dropout_prob: (optional) float. Dropout probability of the
attention probabilities.
initializer_range: float. Range of the weight initializer.
batch_size: (Optional) int. If the input is 2D, this might be the batch size
of the 3D version of the `from_tensor` and `to_tensor`.
from_seq_length: (Optional) If the input is 2D, this might be the seq length
of the 3D version of the `from_tensor`.
to_seq_length: (Optional) If the input is 2D, this might be the seq length
of the 3D version of the `to_tensor`.
use_einsum: bool. Whether to use einsum or reshape+matmul for dense layers
Returns:
float Tensor of shape [batch_size, from_seq_length, num_attention_heads,
size_per_head].
Raises:
ValueError: Any of the arguments or tensor shapes are invalid.
"""
from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
size_per_head = int(from_shape[2]/num_attention_heads)
if len(from_shape) != len(to_shape):
raise ValueError(
"The rank of `from_tensor` must match the rank of `to_tensor`.")
if len(from_shape) == 3:
batch_size = from_shape[0]
from_seq_length = from_shape[1]
to_seq_length = to_shape[1]
elif len(from_shape) == 2:
if (batch_size is None or from_seq_length is None or to_seq_length is None):
raise ValueError(
"When passing in rank 2 tensors to attention_layer, the values "
"for `batch_size`, `from_seq_length`, and `to_seq_length` "
"must all be specified.")
# Scalar dimensions referenced here:
# B = batch size (number of sequences)
# F = `from_tensor` sequence length
# T = `to_tensor` sequence length
# N = `num_attention_heads`
# H = `size_per_head`
# `query_layer` = [B, F, N, H]
q = dense_layer_3d(from_tensor, num_attention_heads, size_per_head,
create_initializer(initializer_range), query_act,
use_einsum, "query")
# `key_layer` = [B, T, N, H]
k = dense_layer_3d(to_tensor, num_attention_heads, size_per_head,
create_initializer(initializer_range), key_act,
use_einsum, "key")
# `value_layer` = [B, T, N, H]
v = dense_layer_3d(to_tensor, num_attention_heads, size_per_head,
create_initializer(initializer_range), value_act,
use_einsum, "value")
q = tf.transpose(q, [0, 2, 1, 3])
k = tf.transpose(k, [0, 2, 1, 3])
v = tf.transpose(v, [0, 2, 1, 3])
if attention_mask is not None:
attention_mask = tf.reshape(
attention_mask, [batch_size, 1, to_seq_length, 1])
# 'new_embeddings = [B, N, F, H]'
new_embeddings = dot_product_attention(q, k, v, attention_mask,
attention_probs_dropout_prob)
return tf.transpose(new_embeddings, [0, 2, 1, 3])
def attention_ffn_block(layer_input,
hidden_size=768,
attention_mask=None,
num_attention_heads=1,
attention_head_size=64,
attention_probs_dropout_prob=0.0,
intermediate_size=3072,
intermediate_act_fn=None,
initializer_range=0.02,
hidden_dropout_prob=0.0,
use_einsum=True):
"""A network with attention-ffn as sub-block.
Args:
layer_input: float Tensor of shape [batch_size, from_seq_length,
from_width].
hidden_size: (optional) int, size of hidden layer.
attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
The values should be 1 or 0. The attention scores will effectively be set
to -infinity for any positions in the mask that are 0, and will be
unchanged for positions that are 1.
num_attention_heads: int. Number of attention heads.
attention_head_size: int. Size of attention head.
attention_probs_dropout_prob: float. dropout probability for attention_layer
intermediate_size: int. Size of intermediate hidden layer.
intermediate_act_fn: (optional) Activation function for the intermediate
layer.
initializer_range: float. Range of the weight initializer.
hidden_dropout_prob: (optional) float. Dropout probability of the hidden
layer.
use_einsum: bool. Whether to use einsum or reshape+matmul for dense layers
Returns:
layer output
"""
with tf.variable_scope("attention_1"):
with tf.variable_scope("self"):
attention_output = attention_layer(
from_tensor=layer_input,
to_tensor=layer_input,
attention_mask=attention_mask,
num_attention_heads=num_attention_heads,
attention_probs_dropout_prob=attention_probs_dropout_prob,
initializer_range=initializer_range,
use_einsum=use_einsum)
# Run a linear projection of `hidden_size` then add a residual
# with `layer_input`.
with tf.variable_scope("output"):
attention_output = dense_layer_3d_proj(
attention_output,
hidden_size,
attention_head_size,
create_initializer(initializer_range),
None,
use_einsum=use_einsum,
name="dense")
attention_output = dropout(attention_output, hidden_dropout_prob)
attention_output = layer_norm(attention_output + layer_input)
with tf.variable_scope("ffn_1"):
with tf.variable_scope("intermediate"):
intermediate_output = dense_layer_2d(
attention_output,
intermediate_size,
create_initializer(initializer_range),
intermediate_act_fn,