forked from hashicorp/vault
-
Notifications
You must be signed in to change notification settings - Fork 0
/
policy.go
950 lines (794 loc) · 24.7 KB
/
policy.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
package keysutil
import (
"bytes"
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"crypto/x509"
"encoding/asn1"
"encoding/base64"
"encoding/json"
"encoding/pem"
"fmt"
"io"
"math/big"
"strconv"
"strings"
"time"
"golang.org/x/crypto/ed25519"
"golang.org/x/crypto/hkdf"
uuid "github.com/hashicorp/go-uuid"
"github.com/hashicorp/vault/helper/errutil"
"github.com/hashicorp/vault/helper/jsonutil"
"github.com/hashicorp/vault/helper/kdf"
"github.com/hashicorp/vault/logical"
)
// Careful with iota; don't put anything before it in this const block because
// we need the default of zero to be the old-style KDF
const (
Kdf_hmac_sha256_counter = iota // built-in helper
Kdf_hkdf_sha256 // golang.org/x/crypto/hkdf
)
// Or this one...we need the default of zero to be the original AES256-GCM96
const (
KeyType_AES256_GCM96 = iota
KeyType_ECDSA_P256
KeyType_ED25519
)
const ErrTooOld = "ciphertext or signature version is disallowed by policy (too old)"
type SigningResult struct {
Signature string
PublicKey []byte
}
type ecdsaSignature struct {
R, S *big.Int
}
type KeyType int
func (kt KeyType) EncryptionSupported() bool {
switch kt {
case KeyType_AES256_GCM96:
return true
}
return false
}
func (kt KeyType) DecryptionSupported() bool {
switch kt {
case KeyType_AES256_GCM96:
return true
}
return false
}
func (kt KeyType) SigningSupported() bool {
switch kt {
case KeyType_ECDSA_P256, KeyType_ED25519:
return true
}
return false
}
func (kt KeyType) HashSignatureInput() bool {
switch kt {
case KeyType_ECDSA_P256:
return true
}
return false
}
func (kt KeyType) DerivationSupported() bool {
switch kt {
case KeyType_AES256_GCM96, KeyType_ED25519:
return true
}
return false
}
func (kt KeyType) String() string {
switch kt {
case KeyType_AES256_GCM96:
return "aes256-gcm96"
case KeyType_ECDSA_P256:
return "ecdsa-p256"
case KeyType_ED25519:
return "ed25519"
}
return "[unknown]"
}
// KeyEntry stores the key and metadata
type KeyEntry struct {
// AES or some other kind that is a pure byte slice like ED25519
Key []byte `json:"key"`
// Key used for HMAC functions
HMACKey []byte `json:"hmac_key"`
// Time of creation
CreationTime time.Time `json:"time"`
EC_X *big.Int `json:"ec_x"`
EC_Y *big.Int `json:"ec_y"`
EC_D *big.Int `json:"ec_d"`
// The public key in an appropriate format for the type of key
FormattedPublicKey string `json:"public_key"`
// This is deprecated (but still filled) in favor of the value above which
// is more precise
DeprecatedCreationTime int64 `json:"creation_time"`
}
// keyEntryMap is used to allow JSON marshal/unmarshal
type keyEntryMap map[int]KeyEntry
// MarshalJSON implements JSON marshaling
func (kem keyEntryMap) MarshalJSON() ([]byte, error) {
intermediate := map[string]KeyEntry{}
for k, v := range kem {
intermediate[strconv.Itoa(k)] = v
}
return json.Marshal(&intermediate)
}
// MarshalJSON implements JSON unmarshaling
func (kem keyEntryMap) UnmarshalJSON(data []byte) error {
intermediate := map[string]KeyEntry{}
if err := jsonutil.DecodeJSON(data, &intermediate); err != nil {
return err
}
for k, v := range intermediate {
keyval, err := strconv.Atoi(k)
if err != nil {
return err
}
kem[keyval] = v
}
return nil
}
// Policy is the struct used to store metadata
type Policy struct {
Name string `json:"name"`
Key []byte `json:"key,omitempty"` //DEPRECATED
Keys keyEntryMap `json:"keys"`
// Derived keys MUST provide a context and the master underlying key is
// never used. If convergent encryption is true, the context will be used
// as the nonce as well.
Derived bool `json:"derived"`
KDF int `json:"kdf"`
ConvergentEncryption bool `json:"convergent_encryption"`
// Whether the key is exportable
Exportable bool `json:"exportable"`
// The minimum version of the key allowed to be used for decryption
MinDecryptionVersion int `json:"min_decryption_version"`
// The minimum version of the key allowed to be used for encryption
MinEncryptionVersion int `json:"min_encryption_version"`
// The latest key version in this policy
LatestVersion int `json:"latest_version"`
// The latest key version in the archive. We never delete these, so this is
// a max.
ArchiveVersion int `json:"archive_version"`
// Whether the key is allowed to be deleted
DeletionAllowed bool `json:"deletion_allowed"`
// The version of the convergent nonce to use
ConvergentVersion int `json:"convergent_version"`
// The type of key
Type KeyType `json:"type"`
}
// ArchivedKeys stores old keys. This is used to keep the key loading time sane
// when there are huge numbers of rotations.
type archivedKeys struct {
Keys []KeyEntry `json:"keys"`
}
func (p *Policy) LoadArchive(storage logical.Storage) (*archivedKeys, error) {
archive := &archivedKeys{}
raw, err := storage.Get("archive/" + p.Name)
if err != nil {
return nil, err
}
if raw == nil {
archive.Keys = make([]KeyEntry, 0)
return archive, nil
}
if err := jsonutil.DecodeJSON(raw.Value, archive); err != nil {
return nil, err
}
return archive, nil
}
func (p *Policy) storeArchive(archive *archivedKeys, storage logical.Storage) error {
// Encode the policy
buf, err := json.Marshal(archive)
if err != nil {
return err
}
// Write the policy into storage
err = storage.Put(&logical.StorageEntry{
Key: "archive/" + p.Name,
Value: buf,
})
if err != nil {
return err
}
return nil
}
// handleArchiving manages the movement of keys to and from the policy archive.
// This should *ONLY* be called from Persist() since it assumes that the policy
// will be persisted afterwards.
func (p *Policy) handleArchiving(storage logical.Storage) error {
// We need to move keys that are no longer accessible to archivedKeys, and keys
// that now need to be accessible back here.
//
// For safety, because there isn't really a good reason to, we never delete
// keys from the archive even when we move them back.
// Check if we have the latest minimum version in the current set of keys
_, keysContainsMinimum := p.Keys[p.MinDecryptionVersion]
// Sanity checks
switch {
case p.MinDecryptionVersion < 1:
return fmt.Errorf("minimum decryption version of %d is less than 1", p.MinDecryptionVersion)
case p.LatestVersion < 1:
return fmt.Errorf("latest version of %d is less than 1", p.LatestVersion)
case !keysContainsMinimum && p.ArchiveVersion != p.LatestVersion:
return fmt.Errorf("need to move keys from archive but archive version not up-to-date")
case p.ArchiveVersion > p.LatestVersion:
return fmt.Errorf("archive version of %d is greater than the latest version %d",
p.ArchiveVersion, p.LatestVersion)
case p.MinEncryptionVersion > 0 && p.MinEncryptionVersion < p.MinDecryptionVersion:
return fmt.Errorf("minimum decryption version of %d is greater than minimum encryption version %d",
p.MinDecryptionVersion, p.MinEncryptionVersion)
case p.MinDecryptionVersion > p.LatestVersion:
return fmt.Errorf("minimum decryption version of %d is greater than the latest version %d",
p.MinDecryptionVersion, p.LatestVersion)
}
archive, err := p.LoadArchive(storage)
if err != nil {
return err
}
if !keysContainsMinimum {
// Need to move keys *from* archive
for i := p.MinDecryptionVersion; i <= p.LatestVersion; i++ {
p.Keys[i] = archive.Keys[i]
}
return nil
}
// Need to move keys *to* archive
// We need a size that is equivalent to the latest version (number of keys)
// but adding one since slice numbering starts at 0 and we're indexing by
// key version
if len(archive.Keys) < p.LatestVersion+1 {
// Increase the size of the archive slice
newKeys := make([]KeyEntry, p.LatestVersion+1)
copy(newKeys, archive.Keys)
archive.Keys = newKeys
}
// We are storing all keys in the archive, so we ensure that it is up to
// date up to p.LatestVersion
for i := p.ArchiveVersion + 1; i <= p.LatestVersion; i++ {
archive.Keys[i] = p.Keys[i]
p.ArchiveVersion = i
}
err = p.storeArchive(archive, storage)
if err != nil {
return err
}
// Perform deletion afterwards so that if there is an error saving we
// haven't messed with the current policy
for i := p.LatestVersion - len(p.Keys) + 1; i < p.MinDecryptionVersion; i++ {
delete(p.Keys, i)
}
return nil
}
func (p *Policy) Persist(storage logical.Storage) error {
err := p.handleArchiving(storage)
if err != nil {
return err
}
// Encode the policy
buf, err := p.Serialize()
if err != nil {
return err
}
// Write the policy into storage
err = storage.Put(&logical.StorageEntry{
Key: "policy/" + p.Name,
Value: buf,
})
if err != nil {
return err
}
return nil
}
func (p *Policy) Serialize() ([]byte, error) {
return json.Marshal(p)
}
func (p *Policy) NeedsUpgrade() bool {
// Ensure we've moved from Key -> Keys
if p.Key != nil && len(p.Key) > 0 {
return true
}
// With archiving, past assumptions about the length of the keys map are no
// longer valid
if p.LatestVersion == 0 && len(p.Keys) != 0 {
return true
}
// We disallow setting the version to 0, since they start at 1 since moving
// to rotate-able keys, so update if it's set to 0
if p.MinDecryptionVersion == 0 {
return true
}
// On first load after an upgrade, copy keys to the archive
if p.ArchiveVersion == 0 {
return true
}
// Need to write the version
if p.ConvergentEncryption && p.ConvergentVersion == 0 {
return true
}
if p.Keys[p.LatestVersion].HMACKey == nil || len(p.Keys[p.LatestVersion].HMACKey) == 0 {
return true
}
return false
}
func (p *Policy) Upgrade(storage logical.Storage) error {
persistNeeded := false
// Ensure we've moved from Key -> Keys
if p.Key != nil && len(p.Key) > 0 {
p.MigrateKeyToKeysMap()
persistNeeded = true
}
// With archiving, past assumptions about the length of the keys map are no
// longer valid
if p.LatestVersion == 0 && len(p.Keys) != 0 {
p.LatestVersion = len(p.Keys)
persistNeeded = true
}
// We disallow setting the version to 0, since they start at 1 since moving
// to rotate-able keys, so update if it's set to 0
if p.MinDecryptionVersion == 0 {
p.MinDecryptionVersion = 1
persistNeeded = true
}
// On first load after an upgrade, copy keys to the archive
if p.ArchiveVersion == 0 {
persistNeeded = true
}
if p.ConvergentEncryption && p.ConvergentVersion == 0 {
p.ConvergentVersion = 1
persistNeeded = true
}
if p.Keys[p.LatestVersion].HMACKey == nil || len(p.Keys[p.LatestVersion].HMACKey) == 0 {
entry := p.Keys[p.LatestVersion]
hmacKey, err := uuid.GenerateRandomBytes(32)
if err != nil {
return err
}
entry.HMACKey = hmacKey
p.Keys[p.LatestVersion] = entry
persistNeeded = true
}
if persistNeeded {
err := p.Persist(storage)
if err != nil {
return err
}
}
return nil
}
// DeriveKey is used to derive the encryption key that should be used depending
// on the policy. If derivation is disabled the raw key is used and no context
// is required, otherwise the KDF mode is used with the context to derive the
// proper key.
func (p *Policy) DeriveKey(context []byte, ver int) ([]byte, error) {
if !p.Type.DerivationSupported() {
return nil, errutil.UserError{Err: fmt.Sprintf("derivation not supported for key type %v", p.Type)}
}
if p.Keys == nil || p.LatestVersion == 0 {
return nil, errutil.InternalError{Err: "unable to access the key; no key versions found"}
}
if ver <= 0 || ver > p.LatestVersion {
return nil, errutil.UserError{Err: "invalid key version"}
}
// Fast-path non-derived keys
if !p.Derived {
return p.Keys[ver].Key, nil
}
// Ensure a context is provided
if len(context) == 0 {
return nil, errutil.UserError{Err: "Missing 'context' for key deriviation. The key was created using a derived key, which means additional, per-request information must be included in order to perform operations with the key."}
}
switch p.KDF {
case Kdf_hmac_sha256_counter:
prf := kdf.HMACSHA256PRF
prfLen := kdf.HMACSHA256PRFLen
return kdf.CounterMode(prf, prfLen, p.Keys[ver].Key, context, 256)
case Kdf_hkdf_sha256:
reader := hkdf.New(sha256.New, p.Keys[ver].Key, nil, context)
derBytes := bytes.NewBuffer(nil)
derBytes.Grow(32)
limReader := &io.LimitedReader{
R: reader,
N: 32,
}
switch p.Type {
case KeyType_AES256_GCM96:
n, err := derBytes.ReadFrom(limReader)
if err != nil {
return nil, errutil.InternalError{Err: fmt.Sprintf("error reading returned derived bytes: %v", err)}
}
if n != 32 {
return nil, errutil.InternalError{Err: fmt.Sprintf("unable to read enough derived bytes, needed 32, got %d", n)}
}
return derBytes.Bytes(), nil
case KeyType_ED25519:
// We use the limited reader containing the derived bytes as the
// "random" input to the generation function
_, pri, err := ed25519.GenerateKey(limReader)
if err != nil {
return nil, errutil.InternalError{Err: fmt.Sprintf("error generating derived key: %v", err)}
}
return pri, nil
default:
return nil, errutil.InternalError{Err: "unsupported key type for derivation"}
}
default:
return nil, errutil.InternalError{Err: "unsupported key derivation mode"}
}
}
func (p *Policy) Encrypt(ver int, context, nonce []byte, value string) (string, error) {
if !p.Type.EncryptionSupported() {
return "", errutil.UserError{Err: fmt.Sprintf("message encryption not supported for key type %v", p.Type)}
}
// Guard against a potentially invalid key type
switch p.Type {
case KeyType_AES256_GCM96:
default:
return "", errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)}
}
// Decode the plaintext value
plaintext, err := base64.StdEncoding.DecodeString(value)
if err != nil {
return "", errutil.UserError{Err: "failed to base64-decode plaintext"}
}
switch {
case ver == 0:
ver = p.LatestVersion
case ver < 0:
return "", errutil.UserError{Err: "requested version for encryption is negative"}
case ver > p.LatestVersion:
return "", errutil.UserError{Err: "requested version for encryption is higher than the latest key version"}
case ver < p.MinEncryptionVersion:
return "", errutil.UserError{Err: "requested version for encryption is less than the minimum encryption key version"}
}
// Derive the key that should be used
key, err := p.DeriveKey(context, ver)
if err != nil {
return "", err
}
// Guard against a potentially invalid key type
switch p.Type {
case KeyType_AES256_GCM96:
default:
return "", errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)}
}
// Setup the cipher
aesCipher, err := aes.NewCipher(key)
if err != nil {
return "", errutil.InternalError{Err: err.Error()}
}
// Setup the GCM AEAD
gcm, err := cipher.NewGCM(aesCipher)
if err != nil {
return "", errutil.InternalError{Err: err.Error()}
}
if p.ConvergentEncryption {
switch p.ConvergentVersion {
case 1:
if len(nonce) != gcm.NonceSize() {
return "", errutil.UserError{Err: fmt.Sprintf("base64-decoded nonce must be %d bytes long when using convergent encryption with this key", gcm.NonceSize())}
}
default:
nonceHmac := hmac.New(sha256.New, context)
nonceHmac.Write(plaintext)
nonceSum := nonceHmac.Sum(nil)
nonce = nonceSum[:gcm.NonceSize()]
}
} else {
// Compute random nonce
nonce, err = uuid.GenerateRandomBytes(gcm.NonceSize())
if err != nil {
return "", errutil.InternalError{Err: err.Error()}
}
}
// Encrypt and tag with GCM
out := gcm.Seal(nil, nonce, plaintext, nil)
// Place the encrypted data after the nonce
full := out
if !p.ConvergentEncryption || p.ConvergentVersion > 1 {
full = append(nonce, out...)
}
// Convert to base64
encoded := base64.StdEncoding.EncodeToString(full)
// Prepend some information
encoded = "vault:v" + strconv.Itoa(ver) + ":" + encoded
return encoded, nil
}
func (p *Policy) Decrypt(context, nonce []byte, value string) (string, error) {
if !p.Type.DecryptionSupported() {
return "", errutil.UserError{Err: fmt.Sprintf("message decryption not supported for key type %v", p.Type)}
}
// Verify the prefix
if !strings.HasPrefix(value, "vault:v") {
return "", errutil.UserError{Err: "invalid ciphertext: no prefix"}
}
if p.ConvergentEncryption && p.ConvergentVersion == 1 && (nonce == nil || len(nonce) == 0) {
return "", errutil.UserError{Err: "invalid convergent nonce supplied"}
}
splitVerCiphertext := strings.SplitN(strings.TrimPrefix(value, "vault:v"), ":", 2)
if len(splitVerCiphertext) != 2 {
return "", errutil.UserError{Err: "invalid ciphertext: wrong number of fields"}
}
ver, err := strconv.Atoi(splitVerCiphertext[0])
if err != nil {
return "", errutil.UserError{Err: "invalid ciphertext: version number could not be decoded"}
}
if ver == 0 {
// Compatibility mode with initial implementation, where keys start at
// zero
ver = 1
}
if ver > p.LatestVersion {
return "", errutil.UserError{Err: "invalid ciphertext: version is too new"}
}
if p.MinDecryptionVersion > 0 && ver < p.MinDecryptionVersion {
return "", errutil.UserError{Err: ErrTooOld}
}
// Derive the key that should be used
key, err := p.DeriveKey(context, ver)
if err != nil {
return "", err
}
// Guard against a potentially invalid key type
switch p.Type {
case KeyType_AES256_GCM96:
default:
return "", errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)}
}
// Decode the base64
decoded, err := base64.StdEncoding.DecodeString(splitVerCiphertext[1])
if err != nil {
return "", errutil.UserError{Err: "invalid ciphertext: could not decode base64"}
}
// Setup the cipher
aesCipher, err := aes.NewCipher(key)
if err != nil {
return "", errutil.InternalError{Err: err.Error()}
}
// Setup the GCM AEAD
gcm, err := cipher.NewGCM(aesCipher)
if err != nil {
return "", errutil.InternalError{Err: err.Error()}
}
// Extract the nonce and ciphertext
var ciphertext []byte
if p.ConvergentEncryption && p.ConvergentVersion < 2 {
ciphertext = decoded
} else {
nonce = decoded[:gcm.NonceSize()]
ciphertext = decoded[gcm.NonceSize():]
}
// Verify and Decrypt
plain, err := gcm.Open(nil, nonce, ciphertext, nil)
if err != nil {
return "", errutil.UserError{Err: "invalid ciphertext: unable to decrypt"}
}
return base64.StdEncoding.EncodeToString(plain), nil
}
func (p *Policy) HMACKey(version int) ([]byte, error) {
switch {
case version < 0:
return nil, fmt.Errorf("key version does not exist (cannot be negative)")
case version > p.LatestVersion:
return nil, fmt.Errorf("key version does not exist; latest key version is %d", p.LatestVersion)
}
if p.Keys[version].HMACKey == nil {
return nil, fmt.Errorf("no HMAC key exists for that key version")
}
return p.Keys[version].HMACKey, nil
}
func (p *Policy) Sign(ver int, context, input []byte) (*SigningResult, error) {
if !p.Type.SigningSupported() {
return nil, fmt.Errorf("message signing not supported for key type %v", p.Type)
}
switch {
case ver == 0:
ver = p.LatestVersion
case ver < 0:
return nil, errutil.UserError{Err: "requested version for signing is negative"}
case ver > p.LatestVersion:
return nil, errutil.UserError{Err: "requested version for signing is higher than the latest key version"}
case p.MinEncryptionVersion > 0 && ver < p.MinEncryptionVersion:
return nil, errutil.UserError{Err: "requested version for signing is less than the minimum encryption key version"}
}
var sig []byte
var pubKey []byte
var err error
switch p.Type {
case KeyType_ECDSA_P256:
keyParams := p.Keys[ver]
key := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: elliptic.P256(),
X: keyParams.EC_X,
Y: keyParams.EC_Y,
},
D: keyParams.EC_D,
}
r, s, err := ecdsa.Sign(rand.Reader, key, input)
if err != nil {
return nil, err
}
marshaledSig, err := asn1.Marshal(ecdsaSignature{
R: r,
S: s,
})
if err != nil {
return nil, err
}
sig = marshaledSig
case KeyType_ED25519:
var key ed25519.PrivateKey
if p.Derived {
// Derive the key that should be used
var err error
key, err = p.DeriveKey(context, ver)
if err != nil {
return nil, errutil.InternalError{Err: fmt.Sprintf("error deriving key: %v", err)}
}
pubKey = key.Public().(ed25519.PublicKey)
} else {
key = ed25519.PrivateKey(p.Keys[ver].Key)
}
// Per docs, do not pre-hash ed25519; it does two passes and performs
// its own hashing
sig, err = key.Sign(rand.Reader, input, crypto.Hash(0))
if err != nil {
return nil, err
}
default:
return nil, fmt.Errorf("unsupported key type %v", p.Type)
}
// Convert to base64
encoded := base64.StdEncoding.EncodeToString(sig)
res := &SigningResult{
Signature: "vault:v" + strconv.Itoa(ver) + ":" + encoded,
PublicKey: pubKey,
}
return res, nil
}
func (p *Policy) VerifySignature(context, input []byte, sig string) (bool, error) {
if !p.Type.SigningSupported() {
return false, errutil.UserError{Err: fmt.Sprintf("message verification not supported for key type %v", p.Type)}
}
// Verify the prefix
if !strings.HasPrefix(sig, "vault:v") {
return false, errutil.UserError{Err: "invalid signature: no prefix"}
}
splitVerSig := strings.SplitN(strings.TrimPrefix(sig, "vault:v"), ":", 2)
if len(splitVerSig) != 2 {
return false, errutil.UserError{Err: "invalid signature: wrong number of fields"}
}
ver, err := strconv.Atoi(splitVerSig[0])
if err != nil {
return false, errutil.UserError{Err: "invalid signature: version number could not be decoded"}
}
if ver > p.LatestVersion {
return false, errutil.UserError{Err: "invalid signature: version is too new"}
}
if p.MinDecryptionVersion > 0 && ver < p.MinDecryptionVersion {
return false, errutil.UserError{Err: ErrTooOld}
}
sigBytes, err := base64.StdEncoding.DecodeString(splitVerSig[1])
if err != nil {
return false, errutil.UserError{Err: "invalid base64 signature value"}
}
switch p.Type {
case KeyType_ECDSA_P256:
var ecdsaSig ecdsaSignature
rest, err := asn1.Unmarshal(sigBytes, &ecdsaSig)
if err != nil {
return false, errutil.UserError{Err: "supplied signature is invalid"}
}
if rest != nil && len(rest) != 0 {
return false, errutil.UserError{Err: "supplied signature contains extra data"}
}
keyParams := p.Keys[ver]
key := &ecdsa.PublicKey{
Curve: elliptic.P256(),
X: keyParams.EC_X,
Y: keyParams.EC_Y,
}
return ecdsa.Verify(key, input, ecdsaSig.R, ecdsaSig.S), nil
case KeyType_ED25519:
var key ed25519.PrivateKey
if p.Derived {
// Derive the key that should be used
var err error
key, err = p.DeriveKey(context, ver)
if err != nil {
return false, errutil.InternalError{Err: fmt.Sprintf("error deriving key: %v", err)}
}
} else {
key = ed25519.PrivateKey(p.Keys[ver].Key)
}
return ed25519.Verify(key.Public().(ed25519.PublicKey), input, sigBytes), nil
default:
return false, errutil.InternalError{Err: fmt.Sprintf("unsupported key type %v", p.Type)}
}
return false, errutil.InternalError{Err: "no valid key type found"}
}
func (p *Policy) Rotate(storage logical.Storage) error {
if p.Keys == nil {
// This is an initial key rotation when generating a new policy. We
// don't need to call migrate here because if we've called getPolicy to
// get the policy in the first place it will have been run.
p.Keys = keyEntryMap{}
}
p.LatestVersion += 1
now := time.Now()
entry := KeyEntry{
CreationTime: now,
DeprecatedCreationTime: now.Unix(),
}
hmacKey, err := uuid.GenerateRandomBytes(32)
if err != nil {
return err
}
entry.HMACKey = hmacKey
switch p.Type {
case KeyType_AES256_GCM96:
// Generate a 256bit key
newKey, err := uuid.GenerateRandomBytes(32)
if err != nil {
return err
}
entry.Key = newKey
case KeyType_ECDSA_P256:
privKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
return err
}
entry.EC_D = privKey.D
entry.EC_X = privKey.X
entry.EC_Y = privKey.Y
derBytes, err := x509.MarshalPKIXPublicKey(privKey.Public())
if err != nil {
return fmt.Errorf("error marshaling public key: %s", err)
}
pemBlock := &pem.Block{
Type: "PUBLIC KEY",
Bytes: derBytes,
}
pemBytes := pem.EncodeToMemory(pemBlock)
if pemBytes == nil || len(pemBytes) == 0 {
return fmt.Errorf("error PEM-encoding public key")
}
entry.FormattedPublicKey = string(pemBytes)
case KeyType_ED25519:
pub, pri, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
return err
}
entry.Key = pri
entry.FormattedPublicKey = base64.StdEncoding.EncodeToString(pub)
}
p.Keys[p.LatestVersion] = entry
// This ensures that with new key creations min decryption version is set
// to 1 rather than the int default of 0, since keys start at 1 (either
// fresh or after migration to the key map)
if p.MinDecryptionVersion == 0 {
p.MinDecryptionVersion = 1
}
return p.Persist(storage)
}
func (p *Policy) MigrateKeyToKeysMap() {
now := time.Now()
p.Keys = keyEntryMap{
1: KeyEntry{
Key: p.Key,
CreationTime: now,
DeprecatedCreationTime: now.Unix(),
},
}
p.Key = nil
}