We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
python-excdsa 0.18.0 hypothesis 6.56.2
[ 35s] _____________________________ test_p192_mult_tests _____________________________ [ 35s] [ 35s] @settings(**HYP_SLOW_SETTINGS) [ 35s] > @given(st.integers(min_value=1, max_value=r + 1)) [ 35s] [ 35s] src/ecdsa/test_ellipticcurve.py:47: [ 35s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 35s] src/ecdsa/test_ellipticcurve.py:49: in test_p192_mult_tests [ 35s] inv_m = inverse_mod(multiple, r) [ 35s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 35s] [ 35s] a = 627710173538668076...7194773182842284081 [ 35s] m = 627710173538668076...7194773182842284081 [ 35s] [ 35s] def inverse_mod(a, m): [ 35s] """Inverse of a mod m.""" [ 35s] if a == 0: # pragma: no branch [ 35s] return 0 [ 35s] > return pow(a, -1, m) [ 35s] E ValueError: base is not invertible for the given modulus [ 35s] E Falsifying example: test_p192_mult_tests( [ 35s] E multiple=6277101735386680763835789423176059013767194773182842284081, [ 35s] E ) [ 35s] [ 35s] src/ecdsa/numbertheory.py:266: ValueError
[ 29s] __________________ TestJacobi.test_add_different_scale_points __________________ [ 29s] [ 29s] self = <ecdsa.test_jacobi.TestJacobi testMethod=test_add_different_scale_points> [ 29s] [ 29s] @settings(max_examples=14) [ 29s] > @given( [ 29s] st.integers( [ 29s] min_value=1, max_value=int(generator_brainpoolp160r1.order()) [ 29s] ), [ 29s] st.integers( [ 29s] min_value=1, max_value=int(generator_brainpoolp160r1.order()) [ 29s] ), [ 29s] st.lists( [ 29s] st.integers( [ 29s] min_value=1, max_value=int(curve_brainpoolp160r1.p() - 1) [ 29s] ), [ 29s] min_size=2, [ 29s] max_size=2, [ 29s] unique=True, [ 29s] ), [ 29s] ) [ 29s] [ 29s] src/ecdsa/test_jacobi.py:352: [ 29s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 29s] [ 29s] self = <ecdsa.test_jacobi.TestJacobi testMethod=test_add_different_scale_points> [ 29s] a_mul = 1, b_mul = 133229759844004487...0181364212942568457, new_z = [2, 1] [ 29s] [ 29s] @settings(max_examples=14) [ 29s] @given( [ 29s] st.integers( [ 29s] min_value=1, max_value=int(generator_brainpoolp160r1.order()) [ 29s] ), [ 29s] st.integers( [ 29s] min_value=1, max_value=int(generator_brainpoolp160r1.order()) [ 29s] ), [ 29s] st.lists( [ 29s] st.integers( [ 29s] min_value=1, max_value=int(curve_brainpoolp160r1.p() - 1) [ 29s] ), [ 29s] min_size=2, [ 29s] max_size=2, [ 29s] unique=True, [ 29s] ), [ 29s] ) [ 29s] @example(2, 2, [2, 1]) [ 29s] @example(2, 2, [2, 3]) [ 29s] @example(2, int(generator_brainpoolp160r1.order() - 2), [2, 3]) [ 29s] @example(2, int(generator_brainpoolp160r1.order() - 2), [2, 1]) [ 29s] def test_add_different_scale_points(self, a_mul, b_mul, new_z): [ 29s] j_g = PointJacobi.from_affine(generator_brainpoolp160r1) [ 29s] a = PointJacobi.from_affine(j_g * a_mul) [ 29s] b = PointJacobi.from_affine(j_g * b_mul) [ 29s] [ 29s] p = curve_brainpoolp160r1.p() [ 29s] [ 29s] assume(inverse_mod(new_z[0], p)) [ 29s] assume(inverse_mod(new_z[1], p)) [ 29s] [ 29s] new_zz0 = new_z[0] * new_z[0] % p [ 29s] new_zz1 = new_z[1] * new_z[1] % p [ 29s] [ 29s] a = PointJacobi( [ 29s] curve_brainpoolp160r1, [ 29s] a.x() * new_zz0 % p, [ 29s] a.y() * new_zz0 * new_z[0] % p, [ 29s] new_z[0], [ 29s] ) [ 29s] b = PointJacobi( [ 29s] curve_brainpoolp160r1, [ 29s] > b.x() * new_zz1 % p, [ 29s] b.y() * new_zz1 * new_z[1] % p, [ 29s] new_z[1], [ 29s] ) [ 29s] E TypeError: unsupported operand type(s) for *: 'NoneType' and 'int' [ 29s] E Falsifying example: test_add_different_scale_points( [ 29s] E new_z=[2, 1], [ 29s] E b_mul=1332297598440044874827085038830181364212942568457, [ 29s] E a_mul=1, [ 29s] E self=<ecdsa.test_jacobi.TestJacobi testMethod=test_add_different_scale_points>, [ 29s] E ) [ 29s] [ 29s] src/ecdsa/test_jacobi.py:393: TypeError
[ 32s] ____________________ TestJacobi.test_add_same_scale_points _____________________ [ 32s] [ 32s] self = <ecdsa.test_jacobi.TestJacobi testMethod=test_add_same_scale_points> [ 32s] [ 32s] @settings(max_examples=10) [ 32s] > @given( [ 32s] st.integers( [ 32s] min_value=1, max_value=int(generator_brainpoolp160r1.order()) [ 32s] ), [ 32s] st.integers( [ 32s] min_value=1, max_value=int(generator_brainpoolp160r1.order()) [ 32s] ), [ 32s] st.integers(min_value=1, max_value=int(curve_brainpoolp160r1.p() - 1)), [ 32s] ) [ 32s] [ 32s] src/ecdsa/test_jacobi.py:287: [ 32s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 32s] [ 32s] self = <ecdsa.test_jacobi.TestJacobi testMethod=test_add_same_scale_points> [ 32s] a_mul = 133229759844004487...0181364212942568457, b_mul = 1, new_z = 1 [ 32s] [ 32s] @settings(max_examples=10) [ 32s] @given( [ 32s] st.integers( [ 32s] min_value=1, max_value=int(generator_brainpoolp160r1.order()) [ 32s] ), [ 32s] st.integers( [ 32s] min_value=1, max_value=int(generator_brainpoolp160r1.order()) [ 32s] ), [ 32s] st.integers(min_value=1, max_value=int(curve_brainpoolp160r1.p() - 1)), [ 32s] ) [ 32s] @example(1, 1, 1) [ 32s] @example(3, 3, 3) [ 32s] @example(2, int(generator_brainpoolp160r1.order() - 2), 1) [ 32s] @example(2, int(generator_brainpoolp160r1.order() - 2), 3) [ 32s] def test_add_same_scale_points(self, a_mul, b_mul, new_z): [ 32s] j_g = PointJacobi.from_affine(generator_brainpoolp160r1) [ 32s] a = PointJacobi.from_affine(j_g * a_mul) [ 32s] b = PointJacobi.from_affine(j_g * b_mul) [ 32s] [ 32s] p = curve_brainpoolp160r1.p() [ 32s] [ 32s] assume(inverse_mod(new_z, p)) [ 32s] [ 32s] new_zz = new_z * new_z % p [ 32s] [ 32s] a = PointJacobi( [ 32s] curve_brainpoolp160r1, [ 32s] > a.x() * new_zz % p, [ 32s] a.y() * new_zz * new_z % p, [ 32s] new_z, [ 32s] ) [ 32s] E TypeError: unsupported operand type(s) for *: 'NoneType' and 'int' [ 32s] E Falsifying example: test_add_same_scale_points( [ 32s] E new_z=1, [ 32s] E b_mul=1, [ 32s] E a_mul=1332297598440044874827085038830181364212942568457, [ 32s] E self=<ecdsa.test_jacobi.TestJacobi testMethod=test_add_same_scale_points>, [ 32s] E ) [ 32s] [ 32s] src/ecdsa/test_jacobi.py:313: TypeError
The text was updated successfully, but these errors were encountered:
[ 146s] _______________________________ test_sig_verify ________________________________ [ 146s] [ 146s] @settings(**SIG_VER_SETTINGS) [ 146s] > @example((generator_224, 4, 1, 1)) [ 146s] [ 146s] src/ecdsa/test_ecdsa.py:641: [ 146s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 146s] src/ecdsa/test_ecdsa.py:650: in test_sig_verify [ 146s] pubkey = Public_key(generator, generator * sec_mult) [ 146s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 146s] [ 146s] self = <ecdsa.ecdsa.Public_key object at 0x7fb780c7c280> [ 146s] generator = <ecdsa.ellipticcurve.PointJacobi object at 0x7fb7819f53c0> [ 146s] point = <ecdsa.ellipticcurve.Point object at 0x7fb7819f5690>, verify = True [ 146s] [ 146s] def __init__(self, generator, point, verify=True): [ 146s] """Low level ECDSA public key object. [ 146s] [ 146s] :param generator: the Point that generates the group (the base point) [ 146s] :param point: the Point that defines the public key [ 146s] :param bool verify: if True check if point is valid point on curve [ 146s] [ 146s] :raises InvalidPointError: if the point parameters are invalid or [ 146s] point does not lay on the curve [ 146s] """ [ 146s] [ 146s] self.curve = generator.curve() [ 146s] self.generator = generator [ 146s] self.point = point [ 146s] n = generator.order() [ 146s] p = self.curve.p() [ 146s] > if not (0 <= point.x() < p) or not (0 <= point.y() < p): [ 146s] E TypeError: '<=' not supported between instances of 'int' and 'NoneType' [ 146s] E Generator used: generator_192 [ 146s] E Falsifying example: test_sig_verify( [ 146s] E args=(<ecdsa.ellipticcurve.PointJacobi at 0x7fb7819f53c0>, [ 146s] E 6277101735386680763835789423176059013767194773182842284081, [ 146s] E 1, [ 146s] E 1), [ 146s] E ) [ 146s] [ 146s] src/ecdsa/ecdsa.py:149: TypeError
Sorry, something went wrong.
Successfully merging a pull request may close this issue.
python-excdsa 0.18.0
hypothesis 6.56.2
The text was updated successfully, but these errors were encountered: