Skip to content
⚡️A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python
Python Makefile
Branch: master
Clone or download
Latest commit df85ae8 Jan 21, 2020
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.github/ISSUE_TEMPLATE
examples Update examples/small_parallel_enja_pytorch.py Jul 16, 2019
lineflow
tests
.flake8 add .flake8 Mar 1, 2019
.gitignore Initial commit Feb 25, 2019
.travis.yml
LICENSE Initial commit Feb 25, 2019
Makefile Fix Makefile Jan 3, 2020
Pipfile Replace easyfile with arrayfiles Jan 20, 2020
Pipfile.lock Merge pull request #142 from tofunlp/dependabot/pip/pytest-5.3.4 Jan 21, 2020
README.md
setup.py Replace easyfile with arrayfiles Jan 20, 2020
tox.ini

README.md

LineFlow: Framework-Agnostic NLP Data Loader in Python

Build Status codecov

LineFlow is a simple text dataset loader for NLP deep learning tasks.

  • LineFlow was designed to use in all deep learning frameworks.
  • LineFlow enables you to build pipelines via functional APIs (.map, .filter, .flat_map).
  • LineFlow provides common NLP datasets.

LineFlow is heavily inspired by tensorflow.data.Dataset and chainer.dataset.

Basic Usage

lineflow.TextDataset expects line-oriented text files:

import lineflow as lf


'''/path/to/text will be expected as follows:
i 'm a line 1 .
i 'm a line 2 .
i 'm a line 3 .
'''
ds = lf.TextDataset('/path/to/text')

ds.first()  # "i 'm a line 1 ."
ds.all() # ["i 'm a line 1 .", "i 'm a line 2 .", "i 'm a line 3 ."]
len(ds)  # 3
ds.map(lambda x: x.split()).first()  # ["i", "'m", "a", "line", "1", "."]

Example

  • Please check out the examples to see how to use LineFlow, especially for tokenization, building vocabulary, and indexing.

Loads Penn Treebank:

>>> import lineflow.datasets as lfds
>>> train = lfds.PennTreebank('train')
>>> train.first()
' aer banknote berlitz calloway centrust cluett fromstein gitano guterman hydro-quebec ipo kia memotec mlx nahb punts rake regatta rubens sim snack-food ssangyong swapo wachter '

Splits the sentence to the words:

>>> # continuing from above
>>> train = train.map(str.split)
>>> train.first()
['aer', 'banknote', 'berlitz', 'calloway', 'centrust', 'cluett', 'fromstein', 'gitano', 'guterman', 'hydro-quebec', 'ipo', 'kia', 'memotec', 'mlx', 'nahb', 'punts', 'rake', 'regatta', 'rubens', 'sim', 'snack-food', 'ssangyong', 'swapo', 'wachter']

Obtains words in dataset:

>>> # continuing from above
>>> words = train.flat_map(lambda x: x)
>>> words.take(5) # This is useful to build vocabulary.
['aer', 'banknote', 'berlitz', 'calloway', 'centrust']

Further more:

Requirements

  • Python3.6+

Installation

To install LineFlow:

pip install lineflow

Datasets

Is the dataset you want to use not supported? Suggest a new dataset 🎉

Commonsense Reasoning

CommonsenseQA

Loads the CommonsenseQA dataset:

>>> import lineflow.datasets as lfds

>>> train = lfds.CommonsenseQA("train")
>>> dev = lfds.CommonsenseQA("dev")
>>> test = lfds.CommonsenseQA("test")

The items in this datset as follows:

>>> import lineflow.datasets as lfds

>>> train = lfds.CommonsenseQA("train")
>>> train.first()
{"id": "075e483d21c29a511267ef62bedc0461",
 "answer_key": "A",
 "options": {"A": "ignore",
 "B": "enforce",
 "C": "authoritarian",
 "D": "yell at",
 "E": "avoid"},
 "stem": "The sanctions against the school were a punishing blow, and they seemed to what the efforts the school had made to change?"}
}

Language Modeling

Penn Treebank

Loads the Penn Treebank dataset:

import lineflow.datasets as lfds

train = lfds.PennTreebank('train')
dev = lfds.PennTreebank('dev')
test = lfds.PennTreebank('test')

WikiText-103

Loads the WikiText-103 dataset:

import lineflow.datasets as lfds

train = lfds.WikiText103('train')
dev = lfds.WikiText103('dev')
test = lfds.WikiText103('test')

This dataset is preprossed, so you can tokenize each line with str.split:

>>> import lineflow.datasets as lfds
>>> train = lfds.WikiText103('train').flat_map(lambda x: x.split() + ['<eos>'])
>>> train.take(5)
['<eos>', '=', 'Valkyria', 'Chronicles', 'III']

WikiText-2 (Added by @sobamchan, thanks.)

Loads the WikiText-2 dataset:

import lineflow.datasets as lfds

train = lfds.WikiText2('train')
dev = lfds.WikiText2('dev')
test = lfds.WikiText2('test')

This dataset is preprossed, so you can tokenize each line with str.split:

>>> import lineflow.datasets as lfds
>>> train = lfds.WikiText2('train').flat_map(lambda x: x.split() + ['<eos>'])
>>> train.take(5)
['<eos>', '=', 'Valkyria', 'Chronicles', 'III']

Machine Translation

small_parallel_enja:

Loads the small_parallel_enja dataset which is small English-Japanese parallel corpus:

import lineflow.datasets as lfds

train = lfds.SmallParallelEnJa('train')
dev = lfds.SmallParallelEnJa('dev')
test = lfd.SmallParallelEnJa('test')

This dataset is preprossed, so you can tokenize each line with str.split:

>>> import lineflow.datasets as lfds
>>> train = lfds.SmallParallelEnJa('train').map(lambda x: (x[0].split(), x[1].split()))
>>> train.first()
(['i', 'can', "'t", 'tell', 'who', 'will', 'arrive', 'first', '.'], ['', '', '一番', '', '', '', '', '', '', '', '分か', '', '', '', '', '']

WMT 14

Loads the WMT14 dataset:

import lineflow.datasets as lfds

train = lfds.Wmt14('train')
dev = lfds.Wmt14('dev')
test = lfd.Wmt14('test')

Paraphrase

Microsoft Research Paraphrase Corpus:

Loads the Miscrosoft Research Paraphrase Corpus:

import lineflow.datasets as lfds

train = lfds.MsrParaphrase('train')
test = lfds.MsrParaphrase('test')

The item in this dataset as follows:

>>> import lineflow.datasets as lfds
>>> train = lfds.MsrParaphrase('train')
>>> train.first()
{'quality': '1',
 'id1': '702876',
 'id2': '702977',
 'string1': 'Amrozi accused his brother, whom he called "the witness", of deliberately distorting his evidence.',
 'string2': 'Referring to him as only "the witness", Amrozi accused his brother of deliberately distorting his evidence.'
}

Question Answering

SQuAD:

Loads the SQuAD dataset:

import lineflow.datasets as lfds

train = lfds.Squad('train')
dev = lfds.Squad('dev')

The item in this dataset as follows:

>>> import lineflow.datasets as lfds
>>> train = lfds.Squad('train')
>>> train.first()
{'answers': [{'answer_start': 515, 'text': 'Saint Bernadette Soubirous'}],
 'question': 'To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?',
 'id': '5733be284776f41900661182',
 'title': 'University_of_Notre_Dame',
 'context': 'Architecturally, the school has a Catholic character. Atop the Main Building\'s gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend "Venite Ad Me Omnes". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.'}

Sentiment Analysis

IMDB:

Loads the IMDB dataset:

import lineflow.datasets as lfds

train = lfds.Imdb('train')
test = lfds.Imdb('test')

The item in this dataset as follows:

>>> import lineflow.datasets as lfds
>>> train = lfds.Imdb('train')
>>> train.first()
('For a movie that gets no respect there sure are a lot of memorable quotes listed for this gem. Imagine a movie where Joe Piscopo is actually funny! Maureen Stapleton is a scene stealer. The Moroni character is an absolute scream. Watch for Alan "The Skipper" Hale jr. as a police Sgt.', 0)

Sequence Tagging

CoNLL2000

Loads the CoNLL2000 dataset:

import lineflow.datasets as lfds

train = lfds.Conll2000('train')
test = lfds.Conll2000('test')

Text Summarization

CNN / Daily Mail:

Loads the CNN / Daily Mail dataset:

import lineflow.datasets as lfds

train = lfds.CnnDailymail('train')
dev = lfds.CnnDailymail('dev')
test = lfds.CnnDailymail('test')

This dataset is preprossed, so you can tokenize each line with str.split:

>>> import lineflow.datasets as lfds
>>> train = lfds.CnnDailymail('train').map(lambda x: (x[0].split(), x[1].split()))
>>> train.first()
... # the output is omitted because it's too long to display here.
You can’t perform that action at this time.