-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
RANSACRegressor.ts
584 lines (473 loc) · 19.4 KB
/
RANSACRegressor.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/* eslint-disable */
/* NOTE: This file is auto-generated. Do not edit it directly. */
import crypto from 'node:crypto'
import { PythonBridge, NDArray, ArrayLike, SparseMatrix } from '@/sklearn/types'
/**
RANSAC (RANdom SAmple Consensus) algorithm.
RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set.
Read more in the [User Guide](../linear_model.html#ransac-regression).
[Python Reference](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html)
*/
export class RANSACRegressor {
id: string
opts: any
_py: PythonBridge
_isInitialized: boolean = false
_isDisposed: boolean = false
constructor(opts?: {
/**
Base estimator object which implements the following methods:
*/
estimator?: any
/**
Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min\_samples >= 1`, treated as a relative number `ceil(min\_samples \* X.shape\[0\])` for `min\_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `estimator`. By default a [`LinearRegression`](sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression "sklearn.linear_model.LinearRegression") estimator is assumed and `min\_samples` is chosen as `X.shape\[1\] + 1`. This parameter is highly dependent upon the model, so if a `estimator` other than [`LinearRegression`](sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression "sklearn.linear_model.LinearRegression") is used, the user must provide a value.
*/
min_samples?: number
/**
Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. Points whose residuals are strictly equal to the threshold are considered as inliers.
*/
residual_threshold?: number
/**
This function is called with the randomly selected data before the model is fitted to it: `is\_data\_valid(X, y)`. If its return value is `false` the current randomly chosen sub-sample is skipped.
*/
is_data_valid?: any
/**
This function is called with the estimated model and the randomly selected data: `is\_model\_valid(model, X, y)`. If its return value is `false` the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is\_data\_valid`. `is\_model\_valid` should therefore only be used if the estimated model is needed for making the rejection decision.
*/
is_model_valid?: any
/**
Maximum number of iterations for random sample selection.
@defaultValue `100`
*/
max_trials?: number
/**
Maximum number of iterations that can be skipped due to finding zero inliers or invalid data defined by `is\_data\_valid` or invalid models defined by `is\_model\_valid`.
*/
max_skips?: number
/**
Stop iteration if at least this number of inliers are found.
*/
stop_n_inliers?: number
/**
Stop iteration if score is greater equal than this threshold.
*/
stop_score?: number
/**
RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):
@defaultValue `0.99`
*/
stop_probability?: number
/**
String inputs, ‘absolute\_error’ and ‘squared\_error’ are supported which find the absolute error and squared error per sample respectively.
If `loss` is a callable, then it should be a function that takes two arrays as inputs, the true and predicted value and returns a 1-D array with the i-th value of the array corresponding to the loss on `X\[i\]`.
If the loss on a sample is greater than the `residual\_threshold`, then this sample is classified as an outlier.
@defaultValue `'absolute_error'`
*/
loss?: string
/**
The generator used to initialize the centers. Pass an int for reproducible output across multiple function calls. See [Glossary](../../glossary.html#term-random_state).
*/
random_state?: number
}) {
this.id = `RANSACRegressor${crypto.randomUUID().split('-')[0]}`
this.opts = opts || {}
}
get py(): PythonBridge {
return this._py
}
set py(pythonBridge: PythonBridge) {
this._py = pythonBridge
}
/**
Initializes the underlying Python resources.
This instance is not usable until the `Promise` returned by `init()` resolves.
*/
async init(py: PythonBridge): Promise<void> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (this._isInitialized) {
return
}
if (!py) {
throw new Error('RANSACRegressor.init requires a PythonBridge instance')
}
this._py = py
await this._py.ex`
import numpy as np
from sklearn.linear_model import RANSACRegressor
try: bridgeRANSACRegressor
except NameError: bridgeRANSACRegressor = {}
`
// set up constructor params
await this._py.ex`ctor_RANSACRegressor = {'estimator': ${
this.opts['estimator'] ?? undefined
}, 'min_samples': ${
this.opts['min_samples'] ?? undefined
}, 'residual_threshold': ${
this.opts['residual_threshold'] ?? undefined
}, 'is_data_valid': ${
this.opts['is_data_valid'] ?? undefined
}, 'is_model_valid': ${
this.opts['is_model_valid'] ?? undefined
}, 'max_trials': ${this.opts['max_trials'] ?? undefined}, 'max_skips': ${
this.opts['max_skips'] ?? undefined
}, 'stop_n_inliers': ${
this.opts['stop_n_inliers'] ?? undefined
}, 'stop_score': ${
this.opts['stop_score'] ?? undefined
}, 'stop_probability': ${
this.opts['stop_probability'] ?? undefined
}, 'loss': ${this.opts['loss'] ?? undefined}, 'random_state': ${
this.opts['random_state'] ?? undefined
}}
ctor_RANSACRegressor = {k: v for k, v in ctor_RANSACRegressor.items() if v is not None}`
await this._py
.ex`bridgeRANSACRegressor[${this.id}] = RANSACRegressor(**ctor_RANSACRegressor)`
this._isInitialized = true
}
/**
Disposes of the underlying Python resources.
Once `dispose()` is called, the instance is no longer usable.
*/
async dispose() {
if (this._isDisposed) {
return
}
if (!this._isInitialized) {
return
}
await this._py.ex`del bridgeRANSACRegressor[${this.id}]`
this._isDisposed = true
}
/**
Fit estimator using RANSAC algorithm.
*/
async fit(opts: {
/**
Training data.
*/
X?: ArrayLike | SparseMatrix[]
/**
Target values.
*/
y?: ArrayLike
/**
Individual weights for each sample raises error if sample\_weight is passed and estimator fit method does not support it.
*/
sample_weight?: ArrayLike
}): Promise<any> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error('RANSACRegressor must call init() before fit()')
}
// set up method params
await this._py.ex`pms_RANSACRegressor_fit = {'X': np.array(${
opts['X'] ?? undefined
}) if ${opts['X'] !== undefined} else None, 'y': np.array(${
opts['y'] ?? undefined
}) if ${opts['y'] !== undefined} else None, 'sample_weight': np.array(${
opts['sample_weight'] ?? undefined
}) if ${opts['sample_weight'] !== undefined} else None}
pms_RANSACRegressor_fit = {k: v for k, v in pms_RANSACRegressor_fit.items() if v is not None}`
// invoke method
await this._py
.ex`res_RANSACRegressor_fit = bridgeRANSACRegressor[${this.id}].fit(**pms_RANSACRegressor_fit)`
// convert the result from python to node.js
return this
._py`res_RANSACRegressor_fit.tolist() if hasattr(res_RANSACRegressor_fit, 'tolist') else res_RANSACRegressor_fit`
}
/**
Get metadata routing of this object.
Please check [User Guide](../../metadata_routing.html#metadata-routing) on how the routing mechanism works.
*/
async get_metadata_routing(opts: {
/**
A [`MetadataRequest`](sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest "sklearn.utils.metadata_routing.MetadataRequest") encapsulating routing information.
*/
routing?: any
}): Promise<any> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before get_metadata_routing()'
)
}
// set up method params
await this._py.ex`pms_RANSACRegressor_get_metadata_routing = {'routing': ${
opts['routing'] ?? undefined
}}
pms_RANSACRegressor_get_metadata_routing = {k: v for k, v in pms_RANSACRegressor_get_metadata_routing.items() if v is not None}`
// invoke method
await this._py
.ex`res_RANSACRegressor_get_metadata_routing = bridgeRANSACRegressor[${this.id}].get_metadata_routing(**pms_RANSACRegressor_get_metadata_routing)`
// convert the result from python to node.js
return this
._py`res_RANSACRegressor_get_metadata_routing.tolist() if hasattr(res_RANSACRegressor_get_metadata_routing, 'tolist') else res_RANSACRegressor_get_metadata_routing`
}
/**
Predict using the estimated model.
This is a wrapper for `estimator\_.predict(X)`.
*/
async predict(opts: {
/**
Input data.
*/
X?: any[]
}): Promise<any> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error('RANSACRegressor must call init() before predict()')
}
// set up method params
await this._py.ex`pms_RANSACRegressor_predict = {'X': np.array(${
opts['X'] ?? undefined
}) if ${opts['X'] !== undefined} else None}
pms_RANSACRegressor_predict = {k: v for k, v in pms_RANSACRegressor_predict.items() if v is not None}`
// invoke method
await this._py
.ex`res_RANSACRegressor_predict = bridgeRANSACRegressor[${this.id}].predict(**pms_RANSACRegressor_predict)`
// convert the result from python to node.js
return this
._py`res_RANSACRegressor_predict.tolist() if hasattr(res_RANSACRegressor_predict, 'tolist') else res_RANSACRegressor_predict`
}
/**
Return the score of the prediction.
This is a wrapper for `estimator\_.score(X, y)`.
*/
async score(opts: {
/**
Training data.
*/
X?: any[]
/**
Target values.
*/
y?: ArrayLike
}): Promise<number> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error('RANSACRegressor must call init() before score()')
}
// set up method params
await this._py.ex`pms_RANSACRegressor_score = {'X': np.array(${
opts['X'] ?? undefined
}) if ${opts['X'] !== undefined} else None, 'y': np.array(${
opts['y'] ?? undefined
}) if ${opts['y'] !== undefined} else None}
pms_RANSACRegressor_score = {k: v for k, v in pms_RANSACRegressor_score.items() if v is not None}`
// invoke method
await this._py
.ex`res_RANSACRegressor_score = bridgeRANSACRegressor[${this.id}].score(**pms_RANSACRegressor_score)`
// convert the result from python to node.js
return this
._py`res_RANSACRegressor_score.tolist() if hasattr(res_RANSACRegressor_score, 'tolist') else res_RANSACRegressor_score`
}
/**
Request metadata passed to the `fit` method.
Note that this method is only relevant if `enable\_metadata\_routing=True` (see [`sklearn.set\_config`](sklearn.set_config.html#sklearn.set_config "sklearn.set_config")). Please see [User Guide](../../metadata_routing.html#metadata-routing) on how the routing mechanism works.
The options for each parameter are:
*/
async set_fit_request(opts: {
/**
Metadata routing for `sample\_weight` parameter in `fit`.
*/
sample_weight?: string | boolean
}): Promise<any> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before set_fit_request()'
)
}
// set up method params
await this._py.ex`pms_RANSACRegressor_set_fit_request = {'sample_weight': ${
opts['sample_weight'] ?? undefined
}}
pms_RANSACRegressor_set_fit_request = {k: v for k, v in pms_RANSACRegressor_set_fit_request.items() if v is not None}`
// invoke method
await this._py
.ex`res_RANSACRegressor_set_fit_request = bridgeRANSACRegressor[${this.id}].set_fit_request(**pms_RANSACRegressor_set_fit_request)`
// convert the result from python to node.js
return this
._py`res_RANSACRegressor_set_fit_request.tolist() if hasattr(res_RANSACRegressor_set_fit_request, 'tolist') else res_RANSACRegressor_set_fit_request`
}
/**
Best fitted model (copy of the `estimator` object).
*/
get estimator_(): Promise<any> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before accessing estimator_'
)
}
return (async () => {
// invoke accessor
await this._py
.ex`attr_RANSACRegressor_estimator_ = bridgeRANSACRegressor[${this.id}].estimator_`
// convert the result from python to node.js
return this
._py`attr_RANSACRegressor_estimator_.tolist() if hasattr(attr_RANSACRegressor_estimator_, 'tolist') else attr_RANSACRegressor_estimator_`
})()
}
/**
Number of random selection trials until one of the stop criteria is met. It is always `<= max\_trials`.
*/
get n_trials_(): Promise<number> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before accessing n_trials_'
)
}
return (async () => {
// invoke accessor
await this._py
.ex`attr_RANSACRegressor_n_trials_ = bridgeRANSACRegressor[${this.id}].n_trials_`
// convert the result from python to node.js
return this
._py`attr_RANSACRegressor_n_trials_.tolist() if hasattr(attr_RANSACRegressor_n_trials_, 'tolist') else attr_RANSACRegressor_n_trials_`
})()
}
/**
Boolean mask of inliers classified as `true`.
*/
get inlier_mask_(): Promise<any> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before accessing inlier_mask_'
)
}
return (async () => {
// invoke accessor
await this._py
.ex`attr_RANSACRegressor_inlier_mask_ = bridgeRANSACRegressor[${this.id}].inlier_mask_`
// convert the result from python to node.js
return this
._py`attr_RANSACRegressor_inlier_mask_.tolist() if hasattr(attr_RANSACRegressor_inlier_mask_, 'tolist') else attr_RANSACRegressor_inlier_mask_`
})()
}
/**
Number of iterations skipped due to finding zero inliers.
*/
get n_skips_no_inliers_(): Promise<number> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before accessing n_skips_no_inliers_'
)
}
return (async () => {
// invoke accessor
await this._py
.ex`attr_RANSACRegressor_n_skips_no_inliers_ = bridgeRANSACRegressor[${this.id}].n_skips_no_inliers_`
// convert the result from python to node.js
return this
._py`attr_RANSACRegressor_n_skips_no_inliers_.tolist() if hasattr(attr_RANSACRegressor_n_skips_no_inliers_, 'tolist') else attr_RANSACRegressor_n_skips_no_inliers_`
})()
}
/**
Number of iterations skipped due to invalid data defined by `is\_data\_valid`.
*/
get n_skips_invalid_data_(): Promise<number> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before accessing n_skips_invalid_data_'
)
}
return (async () => {
// invoke accessor
await this._py
.ex`attr_RANSACRegressor_n_skips_invalid_data_ = bridgeRANSACRegressor[${this.id}].n_skips_invalid_data_`
// convert the result from python to node.js
return this
._py`attr_RANSACRegressor_n_skips_invalid_data_.tolist() if hasattr(attr_RANSACRegressor_n_skips_invalid_data_, 'tolist') else attr_RANSACRegressor_n_skips_invalid_data_`
})()
}
/**
Number of iterations skipped due to an invalid model defined by `is\_model\_valid`.
*/
get n_skips_invalid_model_(): Promise<number> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before accessing n_skips_invalid_model_'
)
}
return (async () => {
// invoke accessor
await this._py
.ex`attr_RANSACRegressor_n_skips_invalid_model_ = bridgeRANSACRegressor[${this.id}].n_skips_invalid_model_`
// convert the result from python to node.js
return this
._py`attr_RANSACRegressor_n_skips_invalid_model_.tolist() if hasattr(attr_RANSACRegressor_n_skips_invalid_model_, 'tolist') else attr_RANSACRegressor_n_skips_invalid_model_`
})()
}
/**
Number of features seen during [fit](../../glossary.html#term-fit).
*/
get n_features_in_(): Promise<number> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before accessing n_features_in_'
)
}
return (async () => {
// invoke accessor
await this._py
.ex`attr_RANSACRegressor_n_features_in_ = bridgeRANSACRegressor[${this.id}].n_features_in_`
// convert the result from python to node.js
return this
._py`attr_RANSACRegressor_n_features_in_.tolist() if hasattr(attr_RANSACRegressor_n_features_in_, 'tolist') else attr_RANSACRegressor_n_features_in_`
})()
}
/**
Names of features seen during [fit](../../glossary.html#term-fit). Defined only when `X` has feature names that are all strings.
*/
get feature_names_in_(): Promise<NDArray> {
if (this._isDisposed) {
throw new Error('This RANSACRegressor instance has already been disposed')
}
if (!this._isInitialized) {
throw new Error(
'RANSACRegressor must call init() before accessing feature_names_in_'
)
}
return (async () => {
// invoke accessor
await this._py
.ex`attr_RANSACRegressor_feature_names_in_ = bridgeRANSACRegressor[${this.id}].feature_names_in_`
// convert the result from python to node.js
return this
._py`attr_RANSACRegressor_feature_names_in_.tolist() if hasattr(attr_RANSACRegressor_feature_names_in_, 'tolist') else attr_RANSACRegressor_feature_names_in_`
})()
}
}