Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Triton Error [CUDA]: device kernel image is invalid #4172

Closed
zhyncs opened this issue Jun 20, 2024 · 1 comment
Closed

Triton Error [CUDA]: device kernel image is invalid #4172

zhyncs opened this issue Jun 20, 2024 · 1 comment

Comments

@zhyncs
Copy link

zhyncs commented Jun 20, 2024

Hi @ptillet @Jokeren @ThomasRaoux @jlebar

env

sys.platform: linux
Python: 3.9.16 (main, Aug 15 2023, 19:38:56) [GCC 8.3.1 20190311 (Red Hat 8.3.1-3)]
CUDA available: True
MUSA available: False
GPU 0,1: NVIDIA A100-SXM4-80GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: gcc (GCC) 10.2.1 20210130 (Red Hat 10.2.1-11)
PyTorch: 2.2.2+cu118
PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.3.2 (Git Hash 2dc95a2ad0841e29db8b22fbccaf3e5da7992b01)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.8
  - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90
  - CuDNN 8.9.2  (built against CUDA 12.1)
    - Built with CuDNN 8.7
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.2.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,

transformers: 4.40.0
pydantic: 2.6.0
triton: 2.2.0

reproduce

import torch
import triton
import triton.language as tl


@triton.jit
def _add_kernel(A, B, C, size, BLOCK: tl.constexpr):
    prog_id = tl.program_id(0)
    offs = prog_id * BLOCK + tl.arange(0, BLOCK)
    a = tl.load(A + offs, mask=offs < size)
    b = tl.load(B + offs, mask=offs < size)
    tl.store(C + offs, a + b, mask=offs < size)


def custom_add(a, b):
    c = torch.empty_like(a)
    size = c.size(0)
    BLOCK = 16

    grid = [triton.cdiv(size, BLOCK)]
    _add_kernel[grid](a, b, c, size, BLOCK=BLOCK)
    return c


def check_env_triton():
    try:
        a = torch.tensor([1, 2], device='cuda')
        b = a.new_tensor([3, 4], device='cuda')
        c = custom_add(a, b)
    except Exception as e:
        print(e)


check_env_triton()

error

Triton Error [CUDA]: device kernel image is invalid

If you need more detailed information, please feel free to contact me at any time. Thanks.

@zhyncs
Copy link
Author

zhyncs commented Jun 20, 2024

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant