forked from anishathalye/neural-style
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vgg.py
73 lines (58 loc) · 2.18 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import tensorflow as tf
import numpy as np
import scipy.io as sio
def _conv_layer(weights, bias):
def _make_layer(input):
conv = tf.nn.conv2d(input, tf.constant(weights), strides=[1, 1, 1, 1],
padding='SAME')
return tf.nn.bias_add(conv, bias)
return _make_layer
def _pool_layer():
def _make_layer(input):
return tf.nn.max_pool(input, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
return _make_layer
def _add_layer(input_image, layers, func):
if not layers:
new = func(input_image)
else:
new = func(layers[-1])
layers.append(new)
def net(data_path, input_image):
layers = [
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
]
data = sio.loadmat(data_path)
mean = data['normalization'][0][0][0]
mean_pixel = np.mean(mean, axis=(0, 1))
constants = data['layers'][0]
net = []
for i, kind in enumerate(layers):
short = kind[:4]
if short == 'conv':
weights = constants[i][0][0][0][0][0]
# in matconvnet, weights are [width, height, depth, num_filters]
# but in tensorflow, [height, width, in_channels, out_channels]
weights = np.transpose(weights, (1, 0, 2, 3))
bias = constants[i][0][0][0][0][1].reshape(-1)
new = _conv_layer(weights, bias)
elif short == 'relu':
new = tf.nn.relu
elif short == 'pool':
new = _pool_layer()
else:
raise ValueError('invalid layer type: %s' % kind)
_add_layer(input_image, net, new)
assert len(layers) == len(net)
return dict(zip(layers, net)), mean_pixel
def preprocess(image, mean_pixel):
return image - mean_pixel
def unprocess(image, mean_pixel):
image = image + mean_pixel
return image