Skip to content

Vaidehi99/CausalInfoMin

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Debiasing Multimodal Models via Causal Information Minimization

This repository includes PyTorch code for the EMNLP 2023 (Findings) paper:

Debiasing Multimodal Models via Causal Information Minimization

image image

Setup

  1. Create a virtual environment and activate it.
python3 -m venv env
source env/bin/activate
  1. Install dependencies
python -m pip install -r requirements.txt

TE-D

cd LXMERT-TED
PYTHONPATH=$PYTHONPATH:./src \
python -u src/tasks/vqa.py --train train --valid val  --llayers 9 --xlayers 5 --rlayers 5 --batchSize 32 --optim bert --lr 5e-5 --epochs 50 \
--tqdm --name vqa-cp-test --output /nas-hdd/tarbucket/adyasha/models/vqa-cp/vqa-cp-causal-0.25-contrastive-no-norm-finetuned-lr-5e-5-seed-${SEED}/ \
--seed ${SEED} --loss-fn Farm --use-farm --farm-coeff 0.25 --gpu 1 --causal-model --dynamic-coeff --wandb --contrastive \
--load ./output/pretrained/vqa-cp_lxrt_pretrained.pth

ATE-D

cd LXMERT-VQACP
PYTHONPATH=$PYTHONPATH:./src python -u src/tasks/vqa.py --train train --valid val  --llayers 9 --xlayers 5 --rlayers 5 --loadLXMERTQA snap/pretrained/model --batchSize 32 --optim bert --lr 5e-5 --epochs 4 --tqdm

Reference

Please cite our paper if you find our work useful:

@misc{patil2023debiasing,
      title={Debiasing Multimodal Models via Causal Information Minimization}, 
      author={Vaidehi Patil and Adyasha Maharana and Mohit Bansal},
      year={2023},
      eprint={2311.16941},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published