-
Notifications
You must be signed in to change notification settings - Fork 0
/
Unique_Paths
55 lines (47 loc) · 1.7 KB
/
Unique_Paths
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/*
Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Note: m and n will be at most 100.
*/
//version1
class Solution {
public:
int uniquePaths(int m, int n) {
int numpaths[m][n];
for (int i=0; i<m; ++i)
numpaths[i][0]=1;
for (int j=0; j<n; ++j)
numpaths[0][j]=1;
for (int i=1; i<m; ++i)
for (int j=1; j<n; ++j)
numpaths[i][j]=numpaths[i-1][j]+numpaths[i][j-1];
return numpaths[m-1][n-1];
}
};
1.REMARK: I wrote version2 and version3 at first. They work only if m and n are small. Did not write version1 myself. Version1 uses extra space increase the speed. Also, it does not use recursion.
IDEA: Use a m*n 2dimensional array numpaths[][] to store the number of unique paths. numpaths[i][j] means the number of unique paths from the top-left corner to the position at [i][j]. Note the equation: numpaths[i][j] = numpaths[i-1][j] + numpaths[i][j-1].
2.Time: O(m+n)
//version2:Too slow when m and n are large.
int uniquePaths(int m, int n) {
if (m==1 && n==1) return 1;
else if (m==1) return 1;
else if (n==1) return 1;
else return (uniquePaths(m-1,n)+uniquePaths(m,n-1));
}
//version3:Too slow when m and n are large.
class Solution {
public:
int factorial(int n)
{
if (n==0) return 1;
int result=1;
for (int i=1; i<=n; ++i)
result *= i;
return result;
}
int uniquePaths(int m, int n) {
return (factorial(m+n-2)/(factorial(m-1)*factorial(n-1)));
}
};