-
Notifications
You must be signed in to change notification settings - Fork 47
/
polygon.lua
476 lines (416 loc) · 13.3 KB
/
polygon.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
--[[
Copyright (c) 2011 Matthias Richter
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
Except as contained in this notice, the name(s) of the above copyright holders
shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
]]--
local _PACKAGE, common_local = (...):match("^(.+)%.[^%.]+"), common
if not (type(common) == 'table' and common.class and common.instance) then
assert(common_class ~= false, 'No class commons specification available.')
require(_PACKAGE .. '.class')
common_local, common = common, common_local
end
local vector = require(_PACKAGE .. '.vector-light')
----------------------------
-- Private helper functions
--
-- create vertex list of coordinate pairs
local function toVertexList(vertices, x,y, ...)
if not (x and y) then return vertices end -- no more arguments
vertices[#vertices + 1] = {x = x, y = y} -- set vertex
return toVertexList(vertices, ...) -- recurse
end
-- returns true if three vertices lie on a line
local function areCollinear(p, q, r, eps)
return math.abs(vector.det(q.x-p.x, q.y-p.y, r.x-p.x,r.y-p.y)) <= (eps or 1e-32)
end
-- remove vertices that lie on a line
local function removeCollinear(vertices)
local ret = {}
local i,k = #vertices - 1, #vertices
for l=1,#vertices do
if not areCollinear(vertices[i], vertices[k], vertices[l]) then
ret[#ret+1] = vertices[k]
end
i,k = k,l
end
return ret
end
-- get index of rightmost vertex (for testing orientation)
local function getIndexOfleftmost(vertices)
local idx = 1
for i = 2,#vertices do
if vertices[i].x < vertices[idx].x then
idx = i
end
end
return idx
end
-- returns true if three points make a counter clockwise turn
local function ccw(p, q, r)
return vector.det(q.x-p.x, q.y-p.y, r.x-p.x, r.y-p.y) >= 0
end
-- test wether a and b lie on the same side of the line c->d
local function onSameSide(a,b, c,d)
local px, py = d.x-c.x, d.y-c.y
local l = vector.det(px,py, a.x-c.x, a.y-c.y)
local m = vector.det(px,py, b.x-c.x, b.y-c.y)
return l*m >= 0
end
local function pointInTriangle(p, a,b,c)
return onSameSide(p,a, b,c) and onSameSide(p,b, a,c) and onSameSide(p,c, a,b)
end
-- test whether any point in vertices (but pqr) lies in the triangle pqr
-- note: vertices is *set*, not a list!
local function anyPointInTriangle(vertices, p,q,r)
for v in pairs(vertices) do
if v ~= p and v ~= q and v ~= r and pointInTriangle(v, p,q,r) then
return true
end
end
return false
end
-- test is the triangle pqr is an "ear" of the polygon
-- note: vertices is *set*, not a list!
local function isEar(p,q,r, vertices)
return ccw(p,q,r) and not anyPointInTriangle(vertices, p,q,r)
end
local function segmentsInterset(a,b, p,q)
return not (onSameSide(a,b, p,q) or onSameSide(p,q, a,b))
end
-- returns starting/ending indices of shared edge, i.e. if p and q share the
-- edge with indices p1,p2 of p and q1,q2 of q, the return value is p1,q2
local function getSharedEdge(p,q)
local pindex = setmetatable({}, {__index = function(t,k)
local s = {}
t[k] = s
return s
end})
-- record indices of vertices in p by their coordinates
for i = 1,#p do
pindex[p[i].x][p[i].y] = i
end
-- iterate over all edges in q. if both endpoints of that
-- edge are in p as well, return the indices of the starting
-- vertex
local i,k = #q,1
for k = 1,#q do
local v,w = q[i], q[k]
if pindex[v.x][v.y] and pindex[w.x][w.y] then
return pindex[w.x][w.y], k
end
i = k
end
end
-----------------
-- Polygon class
--
local Polygon = {}
function Polygon:init(...)
local vertices = removeCollinear( toVertexList({}, ...) )
assert(#vertices >= 3, "Need at least 3 non collinear points to build polygon (got "..#vertices..")")
-- assert polygon is oriented counter clockwise
local r = getIndexOfleftmost(vertices)
local q = r > 1 and r - 1 or #vertices
local s = r < #vertices and r + 1 or 1
if not ccw(vertices[q], vertices[r], vertices[s]) then -- reverse order if polygon is not ccw
local tmp = {}
for i=#vertices,1,-1 do
tmp[#tmp + 1] = vertices[i]
end
vertices = tmp
end
-- assert polygon is not self-intersecting
-- outer: only need to check segments #vert;1, 1;2, ..., #vert-3;#vert-2
-- inner: only need to check unconnected segments
local q,p = vertices[#vertices]
for i = 1,#vertices-2 do
p, q = q, vertices[i]
for k = i+1,#vertices-1 do
local a,b = vertices[k], vertices[k+1]
assert(not segmentsInterset(p,q, a,b), 'Polygon may not intersect itself')
end
end
self.vertices = vertices
-- make vertices immutable
setmetatable(self.vertices, {__newindex = function() error("Thou shall not change a polygon's vertices!") end})
-- compute polygon area and centroid
local p,q = vertices[#vertices], vertices[1]
local det = vector.det(p.x,p.y, q.x,q.y) -- also used below
self.area = det
for i = 2,#vertices do
p,q = q,vertices[i]
self.area = self.area + vector.det(p.x,p.y, q.x,q.y)
end
self.area = self.area / 2
p,q = vertices[#vertices], vertices[1]
self.centroid = {x = (p.x+q.x)*det, y = (p.y+q.y)*det}
for i = 2,#vertices do
p,q = q,vertices[i]
det = vector.det(p.x,p.y, q.x,q.y)
self.centroid.x = self.centroid.x + (p.x+q.x) * det
self.centroid.y = self.centroid.y + (p.y+q.y) * det
end
self.centroid.x = self.centroid.x / (6 * self.area)
self.centroid.y = self.centroid.y / (6 * self.area)
-- get outcircle
self._radius = 0
for i = 1,#vertices do
self._radius = math.max(self._radius,
vector.dist(vertices[i].x,vertices[i].y, self.centroid.x,self.centroid.y))
end
end
local newPolygon
-- return vertices as x1,y1,x2,y2, ..., xn,yn
function Polygon:unpack()
local v = {}
for i = 1,#self.vertices do
v[2*i-1] = self.vertices[i].x
v[2*i] = self.vertices[i].y
end
return unpack(v)
end
-- deep copy of the polygon
function Polygon:clone()
return Polygon( self:unpack() )
end
-- get bounding box
function Polygon:bbox()
local ulx,uly = self.vertices[1].x, self.vertices[1].y
local lrx,lry = ulx,uly
for i=2,#self.vertices do
local p = self.vertices[i]
if ulx > p.x then ulx = p.x end
if uly > p.y then uly = p.y end
if lrx < p.x then lrx = p.x end
if lry < p.y then lry = p.y end
end
return ulx,uly, lrx,lry
end
-- a polygon is convex if all edges are oriented ccw
function Polygon:isConvex()
local function isConvex()
local v = self.vertices
if #v == 3 then return true end
if not ccw(v[#v], v[1], v[2]) then
return false
end
for i = 2,#v-1 do
if not ccw(v[i-1], v[i], v[i+1]) then
return false
end
end
if not ccw(v[#v-1], v[#v], v[1]) then
return false
end
return true
end
-- replace function so that this will only be computed once
local status = isConvex()
self.isConvex = function() return status end
return status
end
function Polygon:move(dx, dy)
if not dy then
dx, dy = dx:unpack()
end
for i,v in ipairs(self.vertices) do
v.x = v.x + dx
v.y = v.y + dy
end
self.centroid.x = self.centroid.x + dx
self.centroid.y = self.centroid.y + dy
end
function Polygon:rotate(angle, cx, cy)
if not (cx and cy) then
cx,cy = self.centroid.x, self.centroid.y
end
for i,v in ipairs(self.vertices) do
-- v = (v - center):rotate(angle) + center
v.x,v.y = vector.add(cx,cy, vector.rotate(angle, v.x-cx, v.y-cy))
end
local v = self.centroid
v.x,v.y = vector.add(cx,cy, vector.rotate(angle, v.x-cx, v.y-cy))
end
function Polygon:scale(s, cx,cy)
if not (cx and cy) then
cx,cy = self.centroid.x, self.centroid.y
end
for i,v in ipairs(self.vertices) do
-- v = (v - center) * s + center
v.x,v.y = vector.add(cx,cy, vector.mul(s, v.x-cx, v.y-cy))
end
self._radius = self._radius * s
end
-- triangulation by the method of kong
function Polygon:triangulate()
if #self.vertices == 3 then return {self:clone()} end
local vertices = self.vertices
local next_idx, prev_idx = {}, {}
for i = 1,#vertices do
next_idx[i], prev_idx[i] = i+1,i-1
end
next_idx[#next_idx], prev_idx[1] = 1, #prev_idx
local concave = {}
for i, v in ipairs(vertices) do
if not ccw(vertices[prev_idx[i]], v, vertices[next_idx[i]]) then
concave[v] = true
end
end
local triangles = {}
local n_vert, current, skipped, next, prev = #vertices, 1, 0
while n_vert > 3 do
next, prev = next_idx[current], prev_idx[current]
local p,q,r = vertices[prev], vertices[current], vertices[next]
if isEar(p,q,r, concave) then
if not areCollinear(p, q, r) then
triangles[#triangles+1] = newPolygon(p.x,p.y, q.x,q.y, r.x,r.y)
next_idx[prev], prev_idx[next] = next, prev
concave[q] = nil
n_vert, skipped = n_vert - 1, 0
end
else
skipped = skipped + 1
assert(skipped <= n_vert, "Cannot triangulate polygon")
end
current = next
end
next, prev = next_idx[current], prev_idx[current]
local p,q,r = vertices[prev], vertices[current], vertices[next]
triangles[#triangles+1] = newPolygon(p.x,p.y, q.x,q.y, r.x,r.y)
return triangles
end
-- return merged polygon if possible or nil otherwise
function Polygon:mergedWith(other)
local p,q = getSharedEdge(self.vertices, other.vertices)
assert(p and q, "Polygons do not share an edge")
local ret = {}
for i = 1,p-1 do
ret[#ret+1] = self.vertices[i].x
ret[#ret+1] = self.vertices[i].y
end
for i = 0,#other.vertices-2 do
i = ((i-1 + q) % #other.vertices) + 1
ret[#ret+1] = other.vertices[i].x
ret[#ret+1] = other.vertices[i].y
end
for i = p+1,#self.vertices do
ret[#ret+1] = self.vertices[i].x
ret[#ret+1] = self.vertices[i].y
end
return newPolygon(unpack(ret))
end
-- split polygon into convex polygons.
-- note that this won't be the optimal split in most cases, as
-- finding the optimal split is a really hard problem.
-- the method is to first triangulate and then greedily merge
-- the triangles.
function Polygon:splitConvex()
-- edge case: polygon is a triangle or already convex
if #self.vertices <= 3 or self:isConvex() then return {self:clone()} end
local convex = self:triangulate()
local i = 1
repeat
local p = convex[i]
local k = i + 1
while k <= #convex do
local success, merged = pcall(function() return p:mergedWith(convex[k]) end)
if success and merged:isConvex() then
convex[i] = merged
p = convex[i]
table.remove(convex, k)
else
k = k + 1
end
end
i = i + 1
until i >= #convex
return convex
end
function Polygon:contains(x,y)
-- test if an edge cuts the ray
local function cut_ray(p,q)
return ((p.y > y and q.y < y) or (p.y < y and q.y > y)) -- possible cut
and (x - p.x < (y - p.y) * (q.x - p.x) / (q.y - p.y)) -- x < cut.x
end
-- test if the ray crosses boundary from interior to exterior.
-- this is needed due to edge cases, when the ray passes through
-- polygon corners
local function cross_boundary(p,q)
return (p.y == y and p.x > x and q.y < y)
or (q.y == y and q.x > x and p.y < y)
end
local v = self.vertices
local in_polygon = false
local p,q = v[#v],v[#v]
for i = 1, #v do
p,q = q,v[i]
if cut_ray(p,q) or cross_boundary(p,q) then
in_polygon = not in_polygon
end
end
return in_polygon
end
function Polygon:intersectionsWithRay(x,y, dx,dy)
local nx,ny = vector.perpendicular(dx,dy)
local wx,wy,det
local ts = {} -- ray parameters of each intersection
local q1,q2 = nil, self.vertices[#self.vertices]
for i = 1, #self.vertices do
q1,q2 = q2,self.vertices[i]
wx,wy = q2.x - q1.x, q2.y - q1.y
det = vector.det(dx,dy, wx,wy)
if det ~= 0 then
-- there is an intersection point. check if it lies on both
-- the ray and the segment.
local rx,ry = q2.x - x, q2.y - y
local l = vector.det(rx,ry, wx,wy) / det
local m = vector.det(dx,dy, rx,ry) / det
if m >= 0 and m <= 1 then
-- we cannot jump out early here (i.e. when l > tmin) because
-- the polygon might be concave
ts[#ts+1] = l
end
else
-- lines parralel or incident. get distance of line to
-- anchor point. if they are incident, check if an endpoint
-- lies on the ray
local dist = vector.dot(q1.x-x,q1.y-y, nx,ny)
if dist == 0 then
local l = vector.dot(dx,dy, q1.x-x,q1.y-y)
local m = vector.dot(dx,dy, q2.x-x,q2.y-y)
if l >= m then
ts[#ts+1] = l
else
ts[#ts+1] = m
end
end
end
end
return ts
end
function Polygon:intersectsRay(x,y, dx,dy)
local tmin = math.huge
for _, t in ipairs(self:intersectionsWithRay(x,y,dx,dy)) do
tmin = math.min(tmin, t)
end
return tmin ~= math.huge, tmin
end
Polygon = common_local.class('Polygon', Polygon)
newPolygon = function(...) return common_local.instance(Polygon, ...) end
return Polygon