-
Notifications
You must be signed in to change notification settings - Fork 0
/
kthSmallest.cpp
118 lines (102 loc) · 3.15 KB
/
kthSmallest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// C++ implementation of worst case linear time algorithm
// to find k'th smallest element
#include<iostream>
#include<algorithm>
#include<climits>
using namespace std;
int partition(int arr[], int l, int r, int k);
void insertionSort(int a[], int size);
void insertionSort(int a[], int size){
for(int i = 1; i < size; i++){
int tmp = a[i];
int j = i-1;
while(tmp < a[j] && j >= 0){
a[j+1] = a[j];
j--;
}
a[j+1] = tmp;
}
}
// A simple function to find median of arr[]. This is called
// only for an array of size 5 in this program.
int findMedian(int arr[], int n)
{
//sort(arr, arr+n); // Sort the array
insertionSort(arr, n);
return arr[n/2]; // Return middle element
}
// Returns k'th smallest element in arr[l..r] in worst case
// linear time. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
// If k is smaller than number of elements in array
if (k > 0 && k <= r - l + 1)
{
int n = r-l+1; // Number of elements in arr[l..r]
// Divide arr[] in groups of size 5, calculate median
// of every group and store it in median[] array.
int i, median[(n+4)/5]; // There will be floor((n+4)/5) groups;
for (i=0; i<n/5; i++)
median[i] = findMedian(arr+l+i*5, 5);
if (i*5 < n) //For last group with less than 5 elements
{
median[i] = findMedian(arr+l+i*5, n%5);
i++;
}
// Find median of all medians using recursive call.
// If median[] has only one element, then no need
// of recursive call
int medOfMed = (i == 1)? median[i-1]:
kthSmallest(median, 0, i-1, i/2);
// Partition the array around a random element and
// get position of pivot element in sorted array
int pos = partition(arr, l, r, medOfMed);
// If position is same as k
if (pos-l == k-1)
return arr[pos];
if (pos-l > k-1) // If position is more, recur for left
return kthSmallest(arr, l, pos-1, k);
// Else recur for right subarray
return kthSmallest(arr, pos+1, r, k-pos+l-1);
}
// If k is more than number of elements in array
return INT_MAX;
}
void swap(int *a, int *b)
{
int temp = *a;
*a = *b;
*b = temp;
}
// It searches for x in arr[l..r], and partitions the array
// around x.
int partition(int arr[], int l, int r, int x)
{
// Search for x in arr[l..r] and move it to end
int i;
for (i=l; i<r; i++)
if (arr[i] == x)
break;
swap(&arr[i], &arr[r]);
// Standard partition algorithm
i = l;
for (int j = l; j <= r - 1; j++)
{
if (arr[j] <= x)
{
swap(&arr[i], &arr[j]);
i++;
}
}
swap(&arr[i], &arr[r]);
return i;
}
// Driver program to test above methods
int main()
{
int arr[] = {12, 3, 5, 7, 4, 19, 26, 112, 13, 15, 17, 14, 119, 126};
int n = sizeof(arr)/sizeof(arr[0]), k = 7;
cout << "K'th smallest element is "
<< kthSmallest(arr, 0, n-1, k) << endl;
return 0;
}