-
Notifications
You must be signed in to change notification settings - Fork 1
/
graph.go
438 lines (379 loc) · 14.7 KB
/
graph.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package node
import (
"sync"
corev1 "k8s.io/api/core/v1"
pvutil "k8s.io/kubernetes/pkg/api/v1/persistentvolume"
podutil "k8s.io/kubernetes/pkg/api/v1/pod"
"k8s.io/kubernetes/third_party/forked/gonum/graph"
"k8s.io/kubernetes/third_party/forked/gonum/graph/simple"
)
// namedVertex implements graph.Node and remembers the type, namespace, and name of its related API object
type namedVertex struct {
name string
namespace string
id int
vertexType vertexType
}
func newNamedVertex(vertexType vertexType, namespace, name string, id int) *namedVertex {
return &namedVertex{
vertexType: vertexType,
name: name,
namespace: namespace,
id: id,
}
}
func (n *namedVertex) ID() int {
return n.id
}
func (n *namedVertex) String() string {
if len(n.namespace) == 0 {
return vertexTypes[n.vertexType] + ":" + n.name
}
return vertexTypes[n.vertexType] + ":" + n.namespace + "/" + n.name
}
// destinationEdge is a graph edge that includes a denormalized reference to the final destination vertex.
// This should only be used when there is a single leaf vertex reachable from T.
type destinationEdge struct {
F graph.Node
T graph.Node
Destination graph.Node
}
func newDestinationEdge(from, to, destination graph.Node) graph.Edge {
return &destinationEdge{F: from, T: to, Destination: destination}
}
func (e *destinationEdge) From() graph.Node { return e.F }
func (e *destinationEdge) To() graph.Node { return e.T }
func (e *destinationEdge) Weight() float64 { return 0 }
func (e *destinationEdge) DestinationID() int { return e.Destination.ID() }
// Graph holds graph vertices and a way to look up a vertex for a particular API type/namespace/name.
// All edges point toward the vertices representing Kubernetes nodes:
//
// node <- pod
// pod <- secret,configmap,pvc
// pvc <- pv
// pv <- secret
type Graph struct {
lock sync.RWMutex
graph *simple.DirectedAcyclicGraph
// vertices is a map of type -> namespace -> name -> vertex
vertices map[vertexType]namespaceVertexMapping
// destinationEdgeIndex is a map of vertex -> set of destination IDs
destinationEdgeIndex map[int]*intSet
// destinationEdgeThreshold is the minimum number of distinct destination IDs at which to maintain an index
destinationEdgeThreshold int
}
// namespaceVertexMapping is a map of namespace -> name -> vertex
type namespaceVertexMapping map[string]nameVertexMapping
// nameVertexMapping is a map of name -> vertex
type nameVertexMapping map[string]*namedVertex
func NewGraph() *Graph {
return &Graph{
vertices: map[vertexType]namespaceVertexMapping{},
graph: simple.NewDirectedAcyclicGraph(0, 0),
destinationEdgeIndex: map[int]*intSet{},
// experimentally determined to be the point at which iteration adds an order of magnitude to the authz check.
// since maintaining indexes costs time/memory while processing graph changes, we don't want to make this too low.
destinationEdgeThreshold: 200,
}
}
// vertexType indicates the type of the API object the vertex represents.
// represented as a byte to minimize space used in the vertices.
type vertexType byte
const (
configMapVertexType vertexType = iota
nodeVertexType
podVertexType
pvcVertexType
pvVertexType
secretVertexType
vaVertexType
serviceAccountVertexType
)
var vertexTypes = map[vertexType]string{
configMapVertexType: "configmap",
nodeVertexType: "node",
podVertexType: "pod",
pvcVertexType: "pvc",
pvVertexType: "pv",
secretVertexType: "secret",
vaVertexType: "volumeattachment",
serviceAccountVertexType: "serviceAccount",
}
// must be called under a write lock
func (g *Graph) getOrCreateVertex_locked(vertexType vertexType, namespace, name string) *namedVertex {
if vertex, exists := g.getVertex_rlocked(vertexType, namespace, name); exists {
return vertex
}
return g.createVertex_locked(vertexType, namespace, name)
}
// must be called under a read lock
func (g *Graph) getVertex_rlocked(vertexType vertexType, namespace, name string) (*namedVertex, bool) {
vertex, exists := g.vertices[vertexType][namespace][name]
return vertex, exists
}
// must be called under a write lock
func (g *Graph) createVertex_locked(vertexType vertexType, namespace, name string) *namedVertex {
typedVertices, exists := g.vertices[vertexType]
if !exists {
typedVertices = namespaceVertexMapping{}
g.vertices[vertexType] = typedVertices
}
namespacedVertices, exists := typedVertices[namespace]
if !exists {
namespacedVertices = map[string]*namedVertex{}
typedVertices[namespace] = namespacedVertices
}
vertex := newNamedVertex(vertexType, namespace, name, g.graph.NewNodeID())
namespacedVertices[name] = vertex
g.graph.AddNode(vertex)
return vertex
}
// must be called under write lock
func (g *Graph) deleteVertex_locked(vertexType vertexType, namespace, name string) {
vertex, exists := g.getVertex_rlocked(vertexType, namespace, name)
if !exists {
return
}
// find existing neighbors with a single edge (meaning we are their only neighbor)
neighborsToRemove := []graph.Node{}
neighborsToRecompute := []graph.Node{}
g.graph.VisitFrom(vertex, func(neighbor graph.Node) bool {
// this downstream neighbor has only one edge (which must be from us), so remove them as well
if g.graph.Degree(neighbor) == 1 {
neighborsToRemove = append(neighborsToRemove, neighbor)
}
return true
})
g.graph.VisitTo(vertex, func(neighbor graph.Node) bool {
if g.graph.Degree(neighbor) == 1 {
// this upstream neighbor has only one edge (which must be to us), so remove them as well
neighborsToRemove = append(neighborsToRemove, neighbor)
} else {
// recompute the destination edge index on this neighbor
neighborsToRecompute = append(neighborsToRemove, neighbor)
}
return true
})
// remove the vertex
g.removeVertex_locked(vertex)
// remove neighbors that are now edgeless
for _, neighbor := range neighborsToRemove {
g.removeVertex_locked(neighbor.(*namedVertex))
}
// recompute destination indexes for neighbors that dropped outbound edges
for _, neighbor := range neighborsToRecompute {
g.recomputeDestinationIndex_locked(neighbor)
}
}
// must be called under write lock
// deletes edges from a given vertex type to a specific vertex
// will delete each orphaned "from" vertex, but will never delete the "to" vertex
func (g *Graph) deleteEdges_locked(fromType, toType vertexType, toNamespace, toName string) {
// get the "to" side
toVert, exists := g.getVertex_rlocked(toType, toNamespace, toName)
if !exists {
return
}
// delete all edges between vertices of fromType and toVert
neighborsToRemove := []*namedVertex{}
neighborsToRecompute := []*namedVertex{}
g.graph.VisitTo(toVert, func(from graph.Node) bool {
fromVert := from.(*namedVertex)
if fromVert.vertexType != fromType {
return true
}
// remove the edge
g.graph.RemoveEdge(simple.Edge{F: fromVert, T: toVert})
// track vertexes that changed edges
if g.graph.Degree(fromVert) == 0 {
neighborsToRemove = append(neighborsToRemove, fromVert)
} else {
neighborsToRecompute = append(neighborsToRecompute, fromVert)
}
return true
})
// clean up orphaned verts
for _, v := range neighborsToRemove {
g.removeVertex_locked(v)
}
// recompute destination indexes for neighbors that dropped outbound edges
for _, v := range neighborsToRecompute {
g.recomputeDestinationIndex_locked(v)
}
}
// must be called under write lock
// removeVertex_locked removes the specified vertex from the graph and from the maintained indices.
// It does nothing to indexes of neighbor vertices.
func (g *Graph) removeVertex_locked(v *namedVertex) {
g.graph.RemoveNode(v)
delete(g.destinationEdgeIndex, v.ID())
delete(g.vertices[v.vertexType][v.namespace], v.name)
if len(g.vertices[v.vertexType][v.namespace]) == 0 {
delete(g.vertices[v.vertexType], v.namespace)
}
}
// must be called under write lock
// recomputeDestinationIndex_locked recomputes the index of destination ids for the specified vertex
func (g *Graph) recomputeDestinationIndex_locked(n graph.Node) {
// don't maintain indices for nodes with few edges
edgeCount := g.graph.Degree(n)
if edgeCount < g.destinationEdgeThreshold {
delete(g.destinationEdgeIndex, n.ID())
return
}
// get or create the index
index := g.destinationEdgeIndex[n.ID()]
if index == nil {
index = newIntSet()
} else {
index.startNewGeneration()
}
// populate the index
g.graph.VisitFrom(n, func(dest graph.Node) bool {
if destinationEdge, ok := g.graph.EdgeBetween(n, dest).(*destinationEdge); ok {
index.mark(destinationEdge.DestinationID())
}
return true
})
// remove existing items no longer in the list
index.sweep()
if len(index.members) < g.destinationEdgeThreshold {
delete(g.destinationEdgeIndex, n.ID())
} else {
g.destinationEdgeIndex[n.ID()] = index
}
}
// AddPod should only be called once spec.NodeName is populated.
// It sets up edges for the following relationships (which are immutable for a pod once bound to a node):
//
// pod -> node
//
// secret -> pod
// configmap -> pod
// pvc -> pod
// svcacct -> pod
func (g *Graph) AddPod(pod *corev1.Pod) {
g.lock.Lock()
defer g.lock.Unlock()
g.deleteVertex_locked(podVertexType, pod.Namespace, pod.Name)
podVertex := g.getOrCreateVertex_locked(podVertexType, pod.Namespace, pod.Name)
nodeVertex := g.getOrCreateVertex_locked(nodeVertexType, "", pod.Spec.NodeName)
g.graph.SetEdge(newDestinationEdge(podVertex, nodeVertex, nodeVertex))
// Short-circuit adding edges to other resources for mirror pods.
// A node must never be able to create a pod that grants them permissions on other API objects.
// The NodeRestriction admission plugin prevents creation of such pods, but short-circuiting here gives us defense in depth.
if _, isMirrorPod := pod.Annotations[corev1.MirrorPodAnnotationKey]; isMirrorPod {
return
}
// TODO(mikedanese): If the pod doesn't mount the service account secrets,
// should the node still get access to the service account?
//
// ref https://github.com/kubernetes/kubernetes/issues/58790
if len(pod.Spec.ServiceAccountName) > 0 {
serviceAccountVertex := g.getOrCreateVertex_locked(serviceAccountVertexType, pod.Namespace, pod.Spec.ServiceAccountName)
g.graph.SetEdge(newDestinationEdge(serviceAccountVertex, podVertex, nodeVertex))
g.recomputeDestinationIndex_locked(serviceAccountVertex)
}
podutil.VisitPodSecretNames(pod, func(secret string) bool {
secretVertex := g.getOrCreateVertex_locked(secretVertexType, pod.Namespace, secret)
g.graph.SetEdge(newDestinationEdge(secretVertex, podVertex, nodeVertex))
g.recomputeDestinationIndex_locked(secretVertex)
return true
})
podutil.VisitPodConfigmapNames(pod, func(configmap string) bool {
configmapVertex := g.getOrCreateVertex_locked(configMapVertexType, pod.Namespace, configmap)
g.graph.SetEdge(newDestinationEdge(configmapVertex, podVertex, nodeVertex))
g.recomputeDestinationIndex_locked(configmapVertex)
return true
})
for _, v := range pod.Spec.Volumes {
if v.PersistentVolumeClaim != nil {
pvcVertex := g.getOrCreateVertex_locked(pvcVertexType, pod.Namespace, v.PersistentVolumeClaim.ClaimName)
g.graph.SetEdge(newDestinationEdge(pvcVertex, podVertex, nodeVertex))
g.recomputeDestinationIndex_locked(pvcVertex)
}
}
}
func (g *Graph) DeletePod(name, namespace string) {
g.lock.Lock()
defer g.lock.Unlock()
g.deleteVertex_locked(podVertexType, namespace, name)
}
// AddPV sets up edges for the following relationships:
//
// secret -> pv
//
// pv -> pvc
func (g *Graph) AddPV(pv *corev1.PersistentVolume) {
g.lock.Lock()
defer g.lock.Unlock()
// clear existing edges
g.deleteVertex_locked(pvVertexType, "", pv.Name)
// if we have a pvc, establish new edges
if pv.Spec.ClaimRef != nil {
pvVertex := g.getOrCreateVertex_locked(pvVertexType, "", pv.Name)
// since we don't know the other end of the pvc -> pod -> node chain (or it may not even exist yet), we can't decorate these edges with kubernetes node info
g.graph.SetEdge(simple.Edge{F: pvVertex, T: g.getOrCreateVertex_locked(pvcVertexType, pv.Spec.ClaimRef.Namespace, pv.Spec.ClaimRef.Name)})
pvutil.VisitPVSecretNames(pv, func(namespace, secret string, kubeletVisible bool) bool {
// This grants access to the named secret in the same namespace as the bound PVC
if kubeletVisible {
g.graph.SetEdge(simple.Edge{F: g.getOrCreateVertex_locked(secretVertexType, namespace, secret), T: pvVertex})
}
return true
})
}
}
func (g *Graph) DeletePV(name string) {
g.lock.Lock()
defer g.lock.Unlock()
g.deleteVertex_locked(pvVertexType, "", name)
}
// AddVolumeAttachment sets up edges for the following relationships:
//
// volume attachment -> node
func (g *Graph) AddVolumeAttachment(attachmentName, nodeName string) {
g.lock.Lock()
defer g.lock.Unlock()
// clear existing edges
g.deleteVertex_locked(vaVertexType, "", attachmentName)
// if we have a node, establish new edges
if len(nodeName) > 0 {
vaVertex := g.getOrCreateVertex_locked(vaVertexType, "", attachmentName)
nodeVertex := g.getOrCreateVertex_locked(nodeVertexType, "", nodeName)
g.graph.SetEdge(newDestinationEdge(vaVertex, nodeVertex, nodeVertex))
}
}
func (g *Graph) DeleteVolumeAttachment(name string) {
g.lock.Lock()
defer g.lock.Unlock()
g.deleteVertex_locked(vaVertexType, "", name)
}
// SetNodeConfigMap sets up edges for the Node.Spec.ConfigSource.ConfigMap relationship:
//
// configmap -> node
func (g *Graph) SetNodeConfigMap(nodeName, configMapName, configMapNamespace string) {
g.lock.Lock()
defer g.lock.Unlock()
// TODO(mtaufen): ensure len(nodeName) > 0 in all cases (would sure be nice to have a dependently-typed language here...)
// clear edges configmaps -> node where the destination is the current node *only*
// at present, a node can only have one *direct* configmap reference at a time
g.deleteEdges_locked(configMapVertexType, nodeVertexType, "", nodeName)
// establish new edges if we have a real ConfigMap to reference
if len(configMapName) > 0 && len(configMapNamespace) > 0 {
configmapVertex := g.getOrCreateVertex_locked(configMapVertexType, configMapNamespace, configMapName)
nodeVertex := g.getOrCreateVertex_locked(nodeVertexType, "", nodeName)
g.graph.SetEdge(newDestinationEdge(configmapVertex, nodeVertex, nodeVertex))
}
}