Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

NTL 10.5.0 gives issues in FLINT 2.5.2 #372

Closed
SnarkBoojum opened this issue Aug 31, 2017 · 14 comments
Closed

NTL 10.5.0 gives issues in FLINT 2.5.2 #372

SnarkBoojum opened this issue Aug 31, 2017 · 14 comments

Comments

@SnarkBoojum
Copy link

Here is what the compilation (well, the tests after the compilation) gives:

zz_pX_to_fmpz_mod_poly....FAIL:
f_poly1 = 29 33961 30692 4297 212 19629 13852 24215 33940 11611 17373 5601 8984
21242 28859 15971 18910 3642 20984 20753 22791 3191 7697 23372 5779 14170 3157
33296 3651 27641 2928
f_poly2 = 29 33961 -246763895 -34500079 -1663877 -157797138 -111344267 -1946741
98 -272876656 -93313217 -139664220 -44992724 -72192102 -170768627 -232026654 -12
8390570 -152024487 -29236779 -168697264 -166829640 -183230765 -25603403 -6183528
4 -187882841 -46418908 -113891024 -25331749 -267715228 -29304692 -222213143 -234
98084
zz_pE_to_fq....FAIL:
p = 127
mod = x^9+55x^8+44x^7+79x^6+65x^5+16x^4+17x^3+118x^2+124x+43
f1 = 9a^8+90a^7+12a^6+40a^5+108a^4+73a^3+28a^2+16a+13 - 9
zzpe:[-1384 -1762 -3274 -8944 -13354 -4786 -1258 -11086 -880]
f2 = -880a^8-11086a^7-1258a^6-4786a^5-13354a^4-8944a^3-3274a^2-1762a-138
4 - 9
zz_pEX_to_fq_poly....Aborted

@wbhart
Copy link
Collaborator

wbhart commented Aug 31, 2017 via email

@SnarkBoojum
Copy link
Author

The architecture is amd64.

@infinity0
Copy link

Similar failures on a 32-bit x86 Debian userland (64-bit x86-64 kernel):

zz_pX_to_fmpz_mod_poly....FAIL:
f_poly1 = 375 48751  46828 25744 25050 28704 33600 3450 45503 2044 30957 38816 27835 46139 13649 13240 31347 35570 27568 30010 20672 37850 46973 15947 15065 38057 32181 9959 19866 43819 38859 27244 12672 5985 46444 47359 2589 45474 17013 25096 14103 11136 10321 12014 6 24695 15008 29868 10190 28424 40978 20144 18973 5039 28035 3988 5689 15887 39884 36360 18286 5466 30013 39312 10090 10464 35002 7096 38959 44795 10061 18461 48432 9766 40034 35003 41010 36674 1206 19158 12272 36511 5001 2896 6582 38408 48113 23704 26935 43251 35135 1292 19870 12270 425 2660 31953 18766 1188 32085 33183 27548 43544 2120 6254 10292 38858 38666 8824 11490 39014 20415 39317 11703 18030 1214 43568 19478 40119 46632 21095 28322 8636 29762 4269 34113 29069 5453 43437 18049 30420 14923 386 35810 44188 28437 41261 25288 30676 24451 14774 19844 27195 31812 46120 28772 46613 2716 6812 1418 23700 12562 6207 46727 30043 21628 45276 1351 33699 44984 39311 23455 27521 40840 29843 39546 20270 41506 23252 19411 9230 30185 13782 24167 8390 25574 48045 44838 39743 24609 4580 23046 947 41320 2133 31265 42357 37411 17698 25985 45586 23854 17765 13194 833 25453 40227 20543 29033 14020 33041 12083 48204 24796 11341 28081 30269 9317 45489 14642 37340 45563 8107 21700 21928 9814 40551 30841 21374 29362 15750 44604 23894 16928 10780 11848 36052 48250 38554 15350 35247 7015 27992 41334 17115 19389 23159 22835 9648 37033 42277 46804 14625 18299 30809 14664 25850 2758 12901 47430 27034 22888 1808 7219 20318 1783 25989 15462 36674 38488 44639 42965 20684 7812 28627 13349 22664 20104 2830 4707 46587 45060 7891 23187 12568 38428 44972 22645 17673 4002 43613 22501 38774 38428 5601 11915 32838 45941 3114 26095 28103 38936 45565 19911 6703 10363 33719 24351 39707 15523 31042 18944 32786 1924 15330 47658 43600 26148 25690 15224 22567 6003 9996 37202 35263 47889 47695 45915 4109 43116 10575 18254 12388 41241 42820 13383 13892 19826 3500 21932 31344 243 15292 18316 28998 3853 15749 21519 16075 12585 13437 46124 18770 45004 33331 11465 43147 19810 40387 41118 34857 3131 22712 37011 24373 32078 48110 46847 43677 1829 15916 35235 13839 27829 24729 29743 23866 33009 9269 42898 3210 29076 26319 13651 8927 1829 4567
f_poly2 = 375 48751  -411704118 -226325149 -220183217 -252355223 -295397460 -30270921 -400053954 -17889573 -272145876 -341266935 -244702185 -405659683 -119962562 -116355397 -275558056 -312702095 -242362404 -263810402 -181723056 -332785227 -412971499 -140143178 -132392651 -334588807 -282918623 -87498086 -174606216 -385235334 -341656900 -239486419 -111334612 -52547593 -408340683 -416383683 -22715377 -399810228 -149551055 -220621930 -123959690 -97832121 -90666539 -105582652 6 -217063508 -131905198 -262591769 -89545397 -249869202 -360277663 -177043488 -166758198 -44260869 -246457021 -34999230 -49964086 -139606977 -350626059 -319672698 -160713761 -48014269 -263859150 -345605278 -88667979 -91933922 -307730061 -62345433 -342534318 -393814534 -88375502 -162273618 -425791553 -85791994 -351942186 -307730060 -360570137 -322402440 -10529010 -168415547 -107824940 -320988824 -43919650 -25396375 -57812104 -337659769 -423013065 -208386821 -236756672 -380263300 -308899952 -11308940 -174654963 -107824942 -3655900 -23300318 -280920060 -164954618 -10382775 -282089952 -291741552 -242167420 -382846810 -18572011 -54936123 -90422813 -341608150 -339950808 -77505266 -100951831 -342973022 -179432016 -345654024 -102852907 -158471471 -10626504 -383041790 -171194034 -352722117 -409998029 -185427709 -248991786 -75847920 -261616855 -37485250 -299882039 -255523673 -47868029 -381871897 -158617705 -267417566 -131174018 -3314682 -314846899 -388501282 -249966691 -362763681 -222279272 -269659856 -214918708 -129857890 -174411234 -239047709 -279652675 -405464698 -252940167 -409803044 -23787772 -59810665 -12381336 -208338074 -110408453 -54497411 -410826701 -264102875 -190107272 -398055390 -11796391 -296274879 -395471879 -345605279 -206193275 -241923692 -359059026 -262348039 -347652586 -178164635 -364908480 -204389691 -170609089 -81112434 -265370259 -121132453 -212432691 -73703122 -224814038 -422428121 -394204499 -349407425 -216332329 -40214995 -202586110 -8237972 -363251132 -18669500 -274875624 -372415283 -328885586 -155546743 -228421201 -400785136 -209702948 -156131688 -115965435 -7263066 -223741637 -353648278 -180553161 -255231203 -123228508 -290474168 -106167595 -423792990 -217989676 -99635703 -246846983 -266101440 -81843612 -399956466 -128687998 -328300645 -400590155 -71217104 -190740963 -192739526 -86230705 -356524263 -271122221 -187864980 -258107183 -138437090 -392157191 -210044165 -148771124 -94712413 -104120288 -316942950 -424231703 -338975900 -134927418 -309874860 -61614249 -246067056 -363397371 -150428471 -170414107 -203561017 -200733783 -84768341 -325570896 -371684098 -411509138 -128541762 -160860001 -270829747 -128882980 -227251312 -24177738 -113381925 -417017375 -237634091 -201172489 -15842267 -63417832 -178603346 -15598537 -228469948 -135902326 -322402440 -338390954 -392449662 -377728534 -181820546 -68633596 -251672786 -117330308 -199222673 -176702271 -24811429 -41336141 -409608066 -396154317 -69316031 -203804744 -110457198 -337854753 -395374389 -199076439 -155351764 -35096718 -383431753 -197809057 -340876969 -337854753 -49184158 -104705233 -288670584 -403904845 -27297446 -229396111 -247041965 -342290586 -400590153 -174996179 -58884505 -91056505 -296421112 -214041290 -349114955 -136438526 -272877056 -166514472 -288231877 -16865922 -134732434 -419015938 -383334264 -229883568 -225837693 -133806271 -198394003 -52693828 -87839306 -327082008 -310021097 -421063249 -419357158 -403661116 -36071631 -379044660 -92908831 -160421287 -108848595 -362568697 -376461153 -117622780 -122107363 -174264999 -30709630 -192788273 -275558059 -2047299 -134391215 -161006237 -254938732 -33829341 -138437091 -189132361 -141264323 -110603434 -118061485 -405513445 -165003365 -395666863 -293008930 -100756852 -379337135 -174118762 -355061897 -361496298 -306462680 -27443682 -199661384 -325375914 -214236272 -281992457 -422964317 -411899103 -384016701 -15988499 -139899454 -309777370 -121619906 -244653440 -217404731 -261470621 -209800438 -290181694 -81453652 -377143589 -28174868 -255621168 -231345927 -119962560 -78431432 -15988499 -40068755
zz_pE_to_fq....FAIL:
p = 19
mod = x^6+12*x^5+10*x^4+9*x^3+4*x^2+x+8
f1 = 10*a^5+a^4+4*a^3+12*a^2+a+2 - 6
zzpe:[2 1 -45 4 1 -28]
f2 = -28*a^5+a^4+4*a^3-45*a^2+a+2 - 6
zz_pEX_to_fq_poly....FAIL:
p = 11
mod = x^5+4*x^4+6*x^2+6*x+7
f1 = (2*a^4+9*a^3+2*a^2+3*a+8)*x^537+(8*a)*x^536+(8*a^4+4*a^3+7*a^2+8*a+3)*x^535+(a^3)*x^534+(6*a^3+10*a^2+4*a+3)*x^533+(10*a^3+9*a^2+2*a+4)*x^532+(9*a^4+2*a^3+3*a^2+5*a+2)*x^531+(8*a^4+a^3+2*a^2)*x^530+(9*a)*x^529+(3*a^4+9*a^3+a^2+7*a+9)*x^528+(2*a^2)*x^527+(7*a^4+9*a+5)*x^526+(8*a^4+3*a^3+9*a^2+8*a)*x^525+(6*a^4+2*a^3+3*a^2+3*a+10)*x^524+(4*a^3)*x^523+(2*a^4+6*a^3+2*a^2+a+9)*x^522+(2*a^4+a^3+4*a^2+7*a+9)*x^521+(2*a^4+9*a^3+2*a^2+8*a+10)*x^520+(10*a^3+8)*x^518+(9*a^4+5*a^3+5*a^2+9*a+8)*x^517+(6*a^4+7*a^3+10*a^2+3*a+2)*x^516+(4*a^4+8*a^3+6*a^2+9*a)*x^515+(5*a^4+5*a^3+5*a^2+3)*x^514+(9*a^3+4*a^2)*x^513+(8*a^4+5*a^3+2*a+7)*x^512+(2*a^4+8*a^3+4*a^2+5*a+9)*x^511+(6*a^2+10*a)*x^510+(8*a^4+5*a^3+8*a^2+a)*x^509+(2*a^4+5*a^3+a^2+10*a+6)*x^508+(3*a^4+4*a^3+6)*x^507+(10*a^4+8*a^3+8*a^2+10*a+4)*x^506+(7*a^2+7*a+9)*x^505+(7*a^3+3*a^2+10*a+5)*x^504+(4*a^4+4*a^3+a^2+7)*x^503+(10*a^2)*x^502+(4*a^4+5*a^3+7*a^2+5*a+3)*x^500+(9*a^3+3*a^2+6)*x^498+(8*a^3)*x^497+(2*a^4+a^3+a+7)*x^496+(6*a^4+4*a^3+9)*x^495+(a^4+6*a^3+9*a^2+a+4)*x^494+(a^4+5*a^3+4*a^2+a+2)*x^493+(9*a^4+6*a^3+6*a^2+3*a)*x^492+(6*a^4)*x^491+(9*a^3)*x^490+(7*a^2+10)*x^489+(10*a^2+5*a)*x^488+(2*a^4+a^3+6*a^2+10*a+3)*x^487+(a^4+a^3+8*a^2+10)*x^486+(7*a^3+2*a^2)*x^485+(a^4+10)*x^484+(5*a^4+2*a^3+3*a^2+2*a+9)*x^483+(9*a^4+a^3+2*a^2+6*a+9)*x^482+(9*a^3+2*a)*x^481+(4*a^4+4*a^3+10*a^2+6*a+3)*x^479+(a^2+8)*x^478+(4*a^4+7*a^3+5*a+1)*x^477+(8*a^2)*x^475+(2*a^4+2*a^3+4*a^2+a+2)*x^474+(9*a^4+5*a^2+5*a)*x^473+(8*a^4+9*a^3+4*a^2+3*a+5)*x^472+(7*a^4+4*a+8)*x^471+(4*a^3+4*a^2+6*a+9)*x^470+(3*a^4+a^3+9*a^2+8*a+5)*x^469+(3*a^3+8*a^2+2*a+4)*x^468+(3*a^4+2*a^3+a^2+5*a+6)*x^467+(10*a+8)*x^466+(a^4+5*a^3+4*a^2+1)*x^465+(4*a^2)*x^463+(9*a^4+3*a^2)*x^462+(2*a^4+a^3+3*a)*x^461+(8*a^2)*x^460+(4*a^4+9*a^3+10*a^2+1)*x^459+(5*a^2+10*a)*x^458+(a^4+8*a^3+3*a^2+6*a+1)*x^457+(3*a^4+8*a^3+4)*x^456+(7*a^4+2*a^2+10*a+2)*x^455+(10*a^4+a^3+5*a^2+3*a+6)*x^454+(2*a^4+2*a^3+9*a^2+8)*x^453+(6*a^3+5*a^2+3*a+2)*x^452+(7*a^4+3*a^3+2*a^2+4*a+8)*x^451+(8*a^2)*x^450+(5*a^4+2*a^3+7*a^2+1)*x^449+(6*a^4+9*a^3+5*a^2+4*a+10)*x^448+(a^2)*x^447+(9*a^4+8*a^3+3*a+3)*x^446+(10*a^4+10*a^3+10*a^2+2*a+4)*x^445+(2*a^4+4*a^3+3*a^2+1)*x^444+(7*a^4+7*a^3+10*a^2+4*a+4)*x^443+(2*a^4+3*a^3+8*a^2+2*a)*x^442+(a^4+8*a^3+9*a^2+10*a+3)*x^441+(4*a+2)*x^440+(2*a^4+3*a^3+3*a)*x^439+(3*a^3+9*a^2+3*a)*x^438+(a^4+8*a^3+10*a^2+5*a+1)*x^437+(7*a^4+3*a^3+3*a^2+8*a+8)*x^436+(5*a^4+9*a^3+a^2+3*a+2)*x^435+(3*a^3+3*a^2+3*a+2)*x^434+(2*a^4+10*a^3+10*a^2+9*a+10)*x^432+(2*a^4+6*a^3+5*a^2+10*a+10)*x^431+(4*a^4+5*a^3)*x^429+(10*a^4+5*a^3+3*a^2+10*a+8)*x^428+(8*a+4)*x^427+(7*a^4+3*a^2+4*a+5)*x^426+(a)*x^425+(4)*x^423+(2*a^4+4*a^3+6*a^2+3*a+7)*x^422+(3*a^4)*x^421+(8*a)*x^420+(10*a^3+2*a^2)*x^419+(8*a^4+10*a^3+3*a^2+8*a+5)*x^418+(10*a^4+8*a^3+a^2+10*a+1)*x^417+(4*a^4+8*a^3+a^2+6*a+3)*x^416+(4*a^4)*x^415+(a^4+3*a^3+2*a^2+3*a)*x^414+(7*a)*x^413+(5*a^3)*x^412+(2*a^4+2*a^3+10*a^2+5*a+9)*x^411+(7*a^2+a+7)*x^410+(4*a^4+a^3+9)*x^409+(2*a^4+a^3+a^2+1)*x^408+(3*a^4+7*a^3+10*a^2+1)*x^407+(2*a^4+3*a^3+2*a^2+10*a+7)*x^406+(8*a^2+4*a)*x^404+(6*a^4+5*a^3+a^2+2*a+9)*x^403+(5*a^3+8*a^2+8*a+7)*x^402+(6*a)*x^401+(7*a^4+7*a^3+9*a^2+4*a+2)*x^400+(5*a^4+9*a^3+8*a^2+5*a)*x^399+(3*a^4+3*a^3+2*a^2+7*a)*x^398+(6*a^4+6*a^3+5*a^2+8*a+7)*x^397+(5*a^4+a^3+2*a^2+5*a+7)*x^396+(3*a^4+4*a^3+5*a^2+8*a+4)*x^395+(7*a^4+8*a^3+6*a+2)*x^394+(10*a^4+7*a^3+3*a^2+4*a+4)*x^393+(2*a^3+7*a^2+6*a+10)*x^392+(8*a^4+10*a^2+6)*x^391+(8*a^4+8*a^3+6)*x^390+(9*a^4+6*a^3+3*a^2+4*a+3)*x^389+(2*a^4)*x^388+(6*a^4+2*a^3+7*a^2+8*a+9)*x^387+(4*a^4+3*a^3+9*a^2+5*a+4)*x^386+(9*a^4+5*a^2)*x^385+(10*a^4+4*a^3+8*a^2+a+6)*x^384+(9*a^2+a)*x^383+(a^4+4*a^3+4*a+5)*x^382+(8*a^4+a^3+3*a^2+3*a+10)*x^381+(10*a^4)*x^378+(a^4+5*a^3+7*a^2+6*a+7)*x^377+(2*a^4+10*a^3+4*a^2+a+8)*x^376+(4*a^4+2*a^3+10*a^2+4*a+5)*x^375+(9*a^4+2*a^3+5*a^2+8)*x^374+(5*a^4+6*a^2+8*a)*x^373+(10*a^3+8*a^2+5*a+9)*x^371+(a^4+9*a^3+2*a^2+1)*x^370+(3*a)*x^369+(8*a^4+7*a^3+a^2+5*a+2)*x^368+(7*a^4+8*a^3+2*a^2+8*a+7)*x^367+(6*a^4+7*a^3+3*a^2+10*a+7)*x^366+(7*a^4+6*a^2+10)*x^365+(4*a^4+5*a^2+a+9)*x^364+(7*a^2+10*a+3)*x^363+(6*a^4+9*a^3+6*a^2+8*a+10)*x^362+(8*a^4+5*a^2+6)*x^361+(4*a^4+10*a^3+8*a^2+10*a+8)*x^360+(9*a^4+6*a^3+8*a^2+4*a)*x^359+(3*a^4)*x^358+(5*a^4+7*a^2+8*a+5)*x^356+(8*a^4+5*a^3+7*a+1)*x^355+(7*a^4+5*a^3+2*a+7)*x^354+(9*a^2+5*a)*x^353+(8*a^4+6*a^3+9*a^2+5*a+2)*x^352+(2*a^4+3*a^3+4*a^2+7*a+9)*x^349+(4*a^4+10*a^3+10*a)*x^348+(8*a^4+10*a^3+2*a^2+6*a+5)*x^347+(a^3+2)*x^346+(a^4+3*a^2+10)*x^345+(7*a^4+7*a^3+10*a+4)*x^344+(6*a^4+9*a^3+a^2+8*a+8)*x^342+(5*a^2)*x^341+(7*a^4+5*a^3+7*a^2+10*a+8)*x^340+(6*a)*x^339+(2*a^4+6*a^3+9*a^2+5*a+5)*x^338+(3*a^4+9*a^3+3*a+5)*x^337+(6*a^4+3*a^3+8*a^2+10*a+7)*x^336+(10*a^4+3*a^3+8*a^2+8*a+2)*x^335+(5*a^4+8*a^3+7*a^2+7*a+4)*x^334+(a^4)*x^333+(9*a^4+5*a^3+8*a^2+a+4)*x^332+(a^4+4*a^3+7*a^2+6*a+1)*x^331+(2*a^4+2*a^3+3)*x^330+(6*a^4+7*a^3+a^2+3)*x^329+(4*a^4+9*a^3+9*a^2+8*a+3)*x^328+(a^4+2*a^3+2*a^2+7*a+1)*x^327+(a^4+10*a^3+7*a^2+9*a+7)*x^326+(7*a^4+7*a^3+5*a^2+7*a+3)*x^325+(2*a^4+6*a^3+8*a^2+a+6)*x^324+(8*a^4+8*a^3+9*a^2+9)*x^323+(9*a^4+a^3+10*a^2+8*a+6)*x^322+(7*a^4+6*a^3+7*a^2+10*a+1)*x^320+(3*a^4+4*a^3+6)*x^319+(6*a^4+4*a^3+4*a^2+4*a+2)*x^318+(2*a^4)*x^317+(10*a^4+8*a^3+a+4)*x^316+(a^2)*x^315+(10*a^4)*x^314+(2*a^2)*x^313+(8*a^4+9*a^3+4*a^2+6*a+5)*x^312+(a^4+6*a^2+5*a+2)*x^310+(6*a^2)*x^309+(10*a^4+10*a^3+8*a+10)*x^308+(5*a^4+4*a^3+5*a^2+2)*x^307+(2*a^4+1)*x^306+(9*a^3+4*a^2+a+5)*x^305+(8*a^4+4*a^3+a^2+9*a+3)*x^304+(8*a^4+3*a^3+6*a^2+9*a+7)*x^303+(8*a^2)*x^302+(4*a+1)*x^301+(2*a^4+4*a^3+3*a^2+7*a+3)*x^300+(2*a+4)*x^299+(9*a^4+2*a^3+4*a^2+2*a+4)*x^298+(8*a^2)*x^297+(7*a^4+8*a^3+5*a^2+2*a)*x^296+(7*a^4+a^3+3*a^2+2*a+3)*x^295+(3*a^4+10*a^3+8*a^2+10*a)*x^294+(8*a^4+9*a^3+7*a^2+4*a+1)*x^293+(10*a^4+10*a^3+3*a^2+5)*x^292+(4*a^4+6*a^3+4*a^2+2*a+3)*x^291+(4*a^4+2*a^2+4*a+4)*x^290+(3*a^4+5*a^3+10*a^2+4*a+8)*x^289+(10*a^2)*x^288+(2*a^3+5*a^2+6*a+6)*x^287+(6*a^4+9*a^3+2*a^2+a+7)*x^286+(6*a^3)*x^285+(6)*x^284+(a^4+6*a^2+2*a+2)*x^283+(a^4+3*a^3+2*a^2+3*a+6)*x^282+(7*a^4+10*a^3+6*a^2+a+6)*x^281+(7*a^3+5*a^2+8*a+4)*x^280+(3*a^2+5*a)*x^279+(10*a^4+a^3+a^2+9*a+1)*x^278+(9*a^4+3*a^3+9*a^2+8*a+5)*x^277+(a^4+4*a^2+7*a+8)*x^276+(4*a^4+5*a^3+5*a^2+2*a+7)*x^275+(4*a^4+5*a^3+3*a^2+10*a+5)*x^274+(9*a^4+6*a^3+3*a^2+8*a+2)*x^273+(10*a)*x^272+(5*a^4+10*a^3+2*a^2+7*a+5)*x^271+(10*a^3+9*a^2+9)*x^270+(3*a^4+6*a^3+2*a^2+9*a+8)*x^269+(5*a^4+10)*x^268+(6*a^4+7*a^3)*x^267+(2*a^4+7*a^3+8*a+7)*x^266+(9*a+2)*x^265+(3*a^3+9*a^2+4*a+1)*x^264+(5*a^4+a^3+10*a^2+6*a)*x^263+(7*a^4+a^3+6*a^2+5*a+10)*x^262+(4)*x^261+(8*a^4+a^3+8*a^2+5*a)*x^260+(9*a^4+5*a^3+3*a^2+8*a+7)*x^259+(7*a^3+4*a^2+5*a+5)*x^258+(6*a^4+4*a^3+7*a^2+8*a+6)*x^257+(8*a^4+4*a^3+10*a^2+9*a+7)*x^256+(6*a^3+6*a^2+9*a+9)*x^255+(5*a^4+7*a^3+2*a^2+8*a+6)*x^254+(a^4+a^3+3*a^2+a+9)*x^253+(6*a^4+8*a^3+9*a^2+2*a+3)*x^252+(6*a^4+8*a^3+9*a^2+4*a+7)*x^250+(3*a^4+5*a^3+7*a^2+4*a+8)*x^249+(4*a^3+7*a^2+9*a+3)*x^248+(2*a^4+6*a^3+2*a)*x^247+(2*a^4+7*a^3+5*a^2+10*a+7)*x^246+(7*a^4+9*a^3+2*a^2+9*a+6)*x^245+(7*a^2+3*a+9)*x^244+(7*a^4+7*a^3+9*a^2+10*a)*x^242+(10*a^4+10*a^3+10*a^2+5*a+5)*x^241+(4*a^2)*x^240+(3*a^4+10*a^3+9*a^2+2)*x^239+(a^3+10*a^2+9*a)*x^238+(3*a^4+a^3+6*a^2+2*a+10)*x^237+(10*a^3+7*a^2+5)*x^236+(9*a^2)*x^235+(4*a^4+3*a^3+a^2+10)*x^234+(4*a^4+a+2)*x^232+(8*a^4+9*a^3+5*a^2+5)*x^231+(10*a^4+7*a^3+8*a^2+6*a)*x^230+(6*a^4+3*a^3+5*a+1)*x^229+(4*a^4+4*a^3+4*a)*x^228+(a^3+a^2+10*a)*x^227+(7*a^4+4*a^3+4*a^2+4*a+6)*x^226+(3*a^4)*x^225+(8*a^4+10*a^3+10*a^2+10*a+8)*x^224+(9*a^4+2*a^3+3*a^2+7*a+2)*x^223+(4*a^3+9*a+2)*x^222+(7*a^4+2*a^3+3*a^2+5*a+10)*x^221+(7*a^4+6*a^3+2*a^2+6*a+7)*x^220+(8*a^4+7)*x^219+(2*a^4+10*a^3+7*a^2+4*a+9)*x^218+(4*a^4+9*a^3+7*a^2+6*a+7)*x^217+(5*a)*x^216+(a^4+10*a^3+a^2+2*a+8)*x^215+(9*a^4+7*a^3+5*a^2+4*a+7)*x^213+(7*a^3)*x^212+(10*a^4+7*a+9)*x^211+(8*a^3+7*a^2+8*a+8)*x^210+(9*a^4)*x^209+(4*a^4+4*a^3+8*a^2+7*a+2)*x^208+(2)*x^207+(5*a^3+5*a^2+7*a+5)*x^206+(8*a^4+10*a^3+8*a+4)*x^205+(7*a^4+9*a^3+4*a^2+a+4)*x^204+(9*a^2+8)*x^203+(a^4+7*a^2+3)*x^202+(6*a^4+9*a^3+8*a^2+2*a)*x^201+(4*a^4+3*a^3+5)*x^200+(9*a^4+8*a^3+6*a^2+5*a+1)*x^199+(a^4+6*a^3+5*a^2+6*a+3)*x^198+(3*a^4+10*a^3+10*a^2+3)*x^197+(3*a^4+8*a^2+5*a+6)*x^196+(a^3+9*a^2+9*a+7)*x^195+(7*a^4+5*a^3+3*a^2+6*a+10)*x^194+(7*a^4+2*a^3+3*a+8)*x^193+(5*a^4+10*a^2+2)*x^192+(a^4+7*a^3+10*a^2+6)*x^191+(2*a^4+5*a^3+6*a^2+3*a+3)*x^190+(9*a^4+9*a^3+7*a^2+3*a+8)*x^189+(10*a^4+6*a^3+5*a^2+8*a+10)*x^188+(9*a^4+4*a^3)*x^187+(6*a^4+3*a^3+3*a^2+7*a+4)*x^185+(6*a^4+a^3+9*a^2+4*a+6)*x^184+(9*a)*x^183+(4*a^4+6*a^3+8*a^2+3*a)*x^182+(2*a^4+10*a^3+8*a^2+2*a+8)*x^181+(9)*x^180+(7*a^4+9*a^3+2*a^2+9*a+6)*x^178+(a^4+8*a+9)*x^177+(3*a^4+3*a^3+2*a^2+7*a+8)*x^176+(6*a^4+4*a^3+6*a+7)*x^175+(a^4+7*a^3+2*a^2+2*a+10)*x^174+(9*a^4+3*a)*x^173+(3*a^4+4*a^3+8*a^2+9*a+5)*x^172+(10*a^4+5*a^3+2*a^2+3*a+6)*x^171+(6*a^4+9*a^3+7*a^2+4*a+2)*x^170+(a^4+5*a^3+2*a^2+8)*x^169+(8*a^4+3*a^3+8*a^2+8*a+4)*x^168+(4*a^4+7*a^3+10*a^2+4*a+2)*x^167+(7*a^2+10*a+9)*x^165+(9*a^4+4*a^3+a+7)*x^164+(9*a^4+6*a^3+3*a^2+9*a+4)*x^163+(6*a^3)*x^162+(9*a^4+9*a^3+10*a^2+4*a+6)*x^161+(9*a^4+7*a^3+6*a^2+2*a+3)*x^160+(2*a^4+9*a^3+4*a^2+6)*x^157+(5*a^4+4*a^3+10*a^2+3*a+1)*x^156+(10*a^4+7*a^3+2*a^2+10)*x^155+(9*a^4+6*a^3+10*a^2+4*a+10)*x^154+(9*a^4+6*a^3+10*a^2+5*a+5)*x^153+(3*a^4+8*a^3+a^2+4*a+6)*x^152+(9*a^3+8*a^2+8)*x^150+(3*a^2+10)*x^149+(8*a^2+10)*x^148+(5*a^4+a^2)*x^146+(3*a^2+a+5)*x^145+(6*a^4)*x^144+(10*a^4+8*a^3+6*a^2+6*a+4)*x^143+(6*a^4+8*a^3+4*a^2+3*a+5)*x^142+(a^4+3)*x^141+(10*a^4+10*a^3+7*a+3)*x^139+(10*a)*x^138+(4*a^4+4*a^3+2*a^2+9*a+10)*x^137+(5*a^4)*x^136+(8*a^4+6*a^3+3*a^2+7*a+10)*x^135+(5*a^4+2*a^2)*x^134+(4*a^4+7*a^3+4*a^2+9*a+4)*x^133+(3)*x^132+(2*a^4+9*a^3+10*a^2+3*a+2)*x^131+(5*a^4+5*a^3+7*a^2+4*a+3)*x^129+(a^4+a^3+10*a^2+8*a+6)*x^128+(5*a^4+5*a^3+6*a^2+2*a+7)*x^127+(5*a^2)*x^126+(7)*x^125+(10*a^4+9*a^3+9*a^2+8*a+2)*x^124+(7*a^4+4*a^3+7*a^2+4)*x^123+(8*a^4+9*a^3+9*a^2+5*a+8)*x^122+(3)*x^121+(8)*x^120+(3*a^4+9*a^3+4*a^2+9*a+8)*x^119+(10*a^4+9*a^3+6*a^2+a)*x^118+(8)*x^117+(4*a^4+6*a^3+3*a^2+8*a+4)*x^116+(10*a^4+8*a^3+8*a^2+6*a+3)*x^115+(7*a^4+6*a^3+2*a^2+4*a+4)*x^114+(9*a^4+10*a^3+3*a^2+3*a+8)*x^113+(2*a^3)*x^112+(7*a^4+9*a^3+8*a^2+2*a+8)*x^111+(a^4+3*a^3+7*a^2+10*a+1)*x^110+(9*a^4+a^3+2*a^2+a+3)*x^109+(8*a^3+5*a)*x^108+(10*a^4+2*a^3+4*a^2+4*a+4)*x^107+(4*a^4+9*a^3+4*a^2+4*a+3)*x^106+(6*a^4+7*a^3+a^2+3*a)*x^105+(9*a^4+3*a^3+2*a^2+2*a+3)*x^104+(10)*x^103+(10*a^3+4*a^2+6*a+10)*x^102+(10*a^4+4*a^3+8*a^2+a+10)*x^101+(a^4+8*a^3+9*a^2+7*a+10)*x^100+(a^4+9*a^3+3*a^2+a+7)*x^99+(9*a^4)*x^98+(5*a^4+9*a^3+7*a^2+7*a)*x^97+(a^4+2*a^3+a^2+1)*x^96+(8*a^4+8*a^3+2*a^2+7*a+6)*x^95+(3*a^4+8*a^3+6*a^2+10*a+7)*x^94+(5*a^4+7*a^3+7*a^2)*x^93+(10*a^4+6*a^3+a^2+3*a+9)*x^92+(10*a^3+4*a+1)*x^91+(5*a^4+5*a^3+a^2+a+10)*x^90+(7*a^4+2*a^2+5*a+6)*x^89+(5*a^4+a^3+7*a^2+8*a+5)*x^88+(8*a^4+9*a)*x^87+(3*a^4+8*a^3+7*a^2+7)*x^86+(7*a^4+7*a^3+3*a^2+5*a+3)*x^85+(3*a^4+5*a^3+6*a^2+4*a+7)*x^84+(10)*x^83+(a^4+6*a^3+2*a^2+2*a+10)*x^82+(5*a^4+5*a^3+5*a^2+6*a+10)*x^81+(6*a^2)*x^80+(6*a^4+5*a^3+8*a^2+8*a+1)*x^79+(10*a^4+5*a^3+7*a)*x^78+(4*a^4+4*a^3+9*a^2+4*a+2)*x^77+(10*a^4+3*a^3+9*a^2+7*a+10)*x^76+(7*a^4+5*a^3+2*a^2+3*a+4)*x^75+(4*a^4+a^3)*x^74+(10*a^4+6)*x^73+(8*a^4+2*a^3+5*a^2+5*a)*x^72+(3*a^4+3*a^3+4*a+5)*x^71+(4*a^2)*x^70+(3*a^4+3*a^3+a^2+6*a+7)*x^69+(8*a^4+3*a^3+a^2+7*a+9)*x^68+(9*a^4+2*a^2+9*a+7)*x^67+(2*a^4+10*a^3+9*a^2+7*a+9)*x^66+(4)*x^65+(3*a^4+2*a^3+a+1)*x^64+(a^4+8*a^3+6*a^2+9*a+7)*x^63+(4*a^4+a^3+9*a^2+6*a+9)*x^62+(5*a^4+8*a^3+6*a^2+9*a+2)*x^60+(3*a^4+10*a^2)*x^58+(5*a^3+10*a^2+2*a+4)*x^56+(10*a^4+5*a^2+3*a+3)*x^55+(8*a^4+4*a^3+4*a^2+a+3)*x^54+(7*a^4+3*a^3+a^2+7)*x^53+(a^4+10*a^3+3*a^2+a)*x^52+(3*a^4+5*a^3+6*a+9)*x^51+(2*a+5)*x^50+(a^4+a^3+2*a^2+5*a+3)*x^49+(10*a^4+3*a^3+5*a^2+5*a+6)*x^48+(8*a^4+4*a^3+4*a^2+7*a+9)*x^47+(8*a^3+8*a^2+2*a+2)*x^46+(5*a^4+9*a^3+7*a^2+4*a+3)*x^45+(3*a^4+6*a^3+9*a^2+2*a+10)*x^44+(6*a^4+9*a^3+10*a^2+9*a+10)*x^43+(6*a^4+2*a^3+5*a^2+2*a)*x^42+(5*a^4+8*a^3+5*a^2+2*a+10)*x^41+(a^2+a+9)*x^40+(4*a)*x^39+(5*a^4+3*a^3+6*a^2+a+5)*x^38+(6*a^3+7*a+1)*x^37+(5*a^4+6*a^3+a^2+10)*x^36+(5*a^2+5)*x^35+(a^4+6*a^3+a+2)*x^34+(7)*x^33+(10*a^3+3*a^2)*x^32+(10*a^4+2*a^3+a^2+4*a+5)*x^31+(a)*x^30+(2*a^4+a^3+6*a^2+2*a+4)*x^29+(7*a^3)*x^28+(9*a^4+4*a^3+2*a^2+7*a+1)*x^27+(3*a^4+6*a^2+3*a+4)*x^26+(2*a^3)*x^25+(8*a^2)*x^22+x^21+(4*a^2+2*a+4)*x^20+(6*a^4+10*a^3+10*a^2+4*a+5)*x^19+(10*a^3+8*a+7)*x^18+(5*a)*x^17+(5*a)*x^16+(a^3)*x^15+(6)*x^14+(4)*x^13+(4*a^3)*x^12+(2*a^4+10*a^3+a+6)*x^11+(4*a^4+a^3+2*a^2+6*a+7)*x^10+(a^4+4*a^3+2*a^2+5*a+10)*x^7+(a^4+6*a^3+3*a^2+a+7)*x^6+(9*a^3)*x^5+(7*a^4+2*a^3+2*a^2+a)*x^3+(10*a^4+2*a^3+2*a^2+8*a+2)*x^2+(3*a^4+5*a^3+a^2+2*a+1)*x+(a^4+7*a^3+9*a^2+6*a+7)
zzpex:[[-4 -5 -13 -4 1] [1 2 1 5 3] [2 -3 2 2 -12] [0 1 2 2 -4] [] [0 0 0 -13] [-4 1 3 -5 1] [-12 5 2 4 1] [] [] [-4 -5 2 1 4] [-5 1 0 -12 2] [0 0 0 4] [4] [-5] [0 0 0 1] [0 5] [0 5] [-4 -3 0 -12] [5 4 -12 -12 -5] [4 2 4] [1] [0 0 -3] [] [] [0 0 0 2] [4 3 -5 0 3] [1 -4 2 4 -13] [0 0 0 -4] [4 2 -5 1 2] [0 1] [5 4 1 2 -12] [0 0 3 -12] [-4] [2 1 0 -5 1] [5 0 5] [-12 0 1 -5 5] [1 -4 0 -5] [5 1 -5 3 5] [0 4] [-13 1 1] [-12 2 5 -3 5] [0 2 5 2 -5] [-12 -13 -12 -13 -5] [-12 2 -13 -5 3] [3 4 -4 -13 5] [2 2 -3 -3] [-13 -4 4 4 -3] [-5 5 5 3 -12] [3 5 2 1 1] [5 2] [-13 -5 0 5 3] [0 1 3 -12 1] [-4 0 1 3 -4] [3 1 4 4 -3] [3 3 5 0 -12] [4 2 -12 5] [] [0 0 -12 0 3] [] [2 -13 -5 -3 5] [] [-13 -5 -13 1 4] [-4 -13 -5 -3 1] [1 1 0 2 3] [4] [-13 -4 -13 -12 2] [-4 -13 2 0 -13] [-13 -4 1 3 -3] [-4 -5 1 3 3] [0 0 4] [5 4 0 3 3] [0 5 5 2 -3] [-5 0 0 0 -12] [0 0 0 1 4] [4 3 2 5 -4] [-12 -4 -13 3 -12] [2 4 -13 4 4] [0 -4 0 5 -12] [1 -3 -3 5 -5] [0 0 -5] [-12 -5 5 5 5] [-12 2 2 -5 1] [-12] [-4 4 -5 5 3] [3 5 3 -4 -4] [-4 0 -4 -3 3] [0 -13 0 0 -3] [5 -3 -4 1 5] [-5 5 2 0 -4] [-12 1 1 5 5] [1 4 0 -12] [-13 3 1 -5 -12] [0 0 -4 -4 5] [-4 -12 -5 -3 3] [-5 -4 2 -3 -3] [1 0 1 2 1] [0 -4 -4 -13 5] [0 0 0 0 -13] [-4 1 3 -13 1] [-12 -4 -13 -3 1] [-12 1 -3 4 -12] [-12 -5 4 -12] [-12] [3 2 2 3 -13] [0 3 1 -4 -5] [3 4 4 -13 4] [4 4 4 2 -12] [0 5 0 -3] [3 1 2 1 -13] [1 -12 -4 3 1] [-3 2 -3 -13 -4] [0 0 0 2] [-3 3 3 -12 -13] [4 4 2 -5 -4] [3 -5 -3 -3 -12] [4 -3 3 -5 4] [-3] [0 1 -5 -13 -12] [-3 -13 4 -13 3] [-3] [3] [-3 5 -13 -13 -3] [4 0 -4 4 -4] [2 -3 -13 -13 -12] [-4] [0 0 5] [-4 2 -5 5 5] [-5 -3 -12 1 1] [3 4 -4 5 5] [] [2 3 -12 -13 2] [3] [4 -13 4 -4 4] [0 0 2 0 5] [-12 -4 3 -5 -3] [0 0 0 0 5] [-12 -13 2 4 4] [0 -12] [3 -4 0 -12 -12] [] [3 0 0 0 1] [5 3 4 -3 -5] [4 -5 -5 -3 -12] [0 0 0 0 -5] [5 1 3] [0 0 1 0 5] [] [-12 0 -3] [-12 0 3] [-3 0 -3 -13] [] [-5 4 1 -3 3] [5 5 -12 -5 -13] [-12 4 -12 -5 -13] [-12 0 2 -4 -12] [1 3 -12 4 5] [-5 0 4 -13 2] [] [] [3 2 -5 -4 -13] [-5 4 -12 -13 -13] [0 0 0 -5] [4 -13 3 -5 -13] [-4 1 0 4 -13] [-13 -12 -4] [] [2 4 -12 -4 4] [4 -3 -3 3 -3] [-3 0 2 5 1] [2 4 -4 -13 -5] [-5 3 2 5 -12] [5 -13 -3 4 3] [0 3 0 0 -13] [-12 2 2 -4 1] [-4 -5 0 4 -5] [-3 -4 2 3 3] [-13 -3 0 0 1] [-5 -13 2 -13 -4] [] [-13] [-3 2 -3 -12 2] [0 3 -3 -5 4] [0 -13] [-5 4 -13 1 -5] [4 -4 3 3 -5] [] [0 0 0 4 -13] [-12 -3 5 -5 -12] [-3 3 -4 -13 -13] [3 3 -5 5 2] [-5 0 -12 -4 1] [2 0 -12 0 5] [-3 3 0 2 -4] [-12 -5 3 5 -4] [-4 -13 -13 1] [-5 5 -3 0 3] [3 0 -12 -12 3] [3 -5 5 -5 1] [1 5 -5 -3 -13] [5 0 0 3 4] [0 2 -3 -13 -5] [3 0 -4 0 1] [-3 0 -13] [4 1 4 -13 -4] [4 -3 0 -12 -3] [5 -4 5 5] [2] [2 -4 -3 4 4] [0 0 0 0 -13] [-3 -3 -4 -3] [-13 -4 0 0 -12] [0 0 0 -4] [-4 4 5 -4 -13] [] [-3 2 1 -12 1] [0 5] [-4 -5 -4 -13 4] [-13 4 -4 -12 2] [-4 0 0 0 -3] [-4 -5 2 -5 -4] [-12 5 3 2 -4] [2 -13 0 4] [2 -4 3 2 -13] [-3 -12 -12 -12 -3] [0 0 0 0 3] [-5 4 4 4 -4] [0 -12 1 1] [0 4 0 4 4] [1 5 0 3 -5] [0 -5 -3 -4 -12] [5 0 5 -13 -3] [2 1 0 0 4] [] [-12 0 1 3 4] [0 0 -13] [5 0 -4 -12] [-12 2 -5 1 3] [0 -13 -12 1] [2 0 -13 -12 3] [0 0 4] [5 5 -12 -12 -12] [0 -12 -13 -4 -4] [] [-13 3 -4] [-5 -13 2 -13 -4] [-4 -12 5 -4 2] [0 2 0 -5 2] [3 -13 -4 4] [-3 4 -4 5 3] [-4 4 -13 -3 -5] [] [3 2 -13 -3 -5] [-13 1 3 1 1] [-5 -3 2 -4 5] [-13 -13 -5 -5] [-4 -13 -12 4 -3] [-5 -3 -4 4 -5] [5 5 4 -4] [-4 -3 3 5 -13] [0 5 -3 1 -3] [4] [-12 5 -5 1 -4] [0 -5 -12 1 5] [1 4 -13 3] [2 -13] [-4 -3 0 -4 2] [0 0 0 -4 -5] [-12 0 0 0 5] [-3 -13 2 -5 3] [-13 0 -13 -12] [5 -4 2 -12 5] [0 -12] [2 -3 3 -5 -13] [5 -12 3 5 4] [-4 2 5 5 4] [-3 -4 4 0 1] [5 -3 -13 3 -13] [1 -13 1 1 -12] [0 5 3] [4 -3 5 -4] [-5 1 -5 -12 -4] [-5 3 2 3 1] [2 2 -5 0 1] [-5] [0 0 0 -5] [-4 1 2 -13 -5] [-5 -5 5 2] [0 0 -12] [-3 4 -12 5 3] [4 4 2 0 4] [3 2 4 -5 4] [5 0 3 -12 -12] [1 4 -4 -13 -3] [0 -12 -3 -12 3] [3 2 3 1 -4] [0 2 5 -3 -4] [0 0 -3] [4 2 4 2 -13] [4 2] [3 -4 3 4 2] [1 4] [0 0 -3] [-4 -13 -5 3 -3] [3 -13 1 4 -3] [5 1 4 -13] [1 0 0 0 2] [2 0 5 4 5] [-12 -3 0 -12 -12] [0 0 -5] [2 5 -5 0 1] [] [5 -5 4 -13 -3] [0 0 2] [0 0 0 0 -12] [0 0 1] [4 1 0 -3 -12] [0 0 0 0 2] [2 4 4 4 -5] [-5 0 0 4 3] [1 -12 -4 -5 -4] [] [-5 -3 -12 1 -13] [-13 0 -13 -3 -3] [-5 1 -3 -5 2] [3 -4 5 -4 -4] [-4 -13 -4 -12 1] [1 -4 2 2 1] [3 -3 -13 -13 4] [3 0 1 -4 -5] [3 0 0 2 2] [1 -5 -4 4 1] [4 1 -3 5 -13] [0 0 0 0 1] [4 -4 -4 -3 5] [2 -3 -3 3 -12] [-4 -12 -3 3 -5] [5 3 0 -13 3] [5 5 -13 -5 2] [0 -5] [-3 -12 -4 5 -4] [0 0 5] [-3 -3 1 -13 -5] [] [4 -12 0 -4 -4] [-12 0 3 0 1] [2 0 0 1] [5 -5 2 -12 -3] [0 -12 0 -12 4] [-13 -4 4 3 2] [] [] [2 5 -13 -5 -3] [0 5 -13] [-4 2 0 5 -4] [1 -4 0 5 -3] [5 -3 -4 0 5] [] [0 0 0 0 3] [0 4 -3 -5 -13] [-3 -12 -3 -12 4] [-5 0 5 0 -3] [-12 -3 -5 -13 -5] [3 -12 -4] [-13 1 5 0 4] [-12 0 -5 0 -4] [-4 -12 3 -4 -5] [-4 -3 2 -3 -4] [2 5 1 -4 -3] [0 3] [1 0 2 -13 1] [-13 5 -3 -12] [] [0 -3 -5 0 5] [-3 0 5 2 -13] [5 4 -12 2 4] [-3 1 4 -12 2] [-4 -5 -4 5 1] [0 0 0 0 -12] [] [] [-12 3 3 1 -3] [5 4 0 4 1] [0 1 -13] [-5 1 -3 4 -12] [0 0 5 0 -13] [4 5 -13 3 4] [-13 -3 -4 2 -5] [0 0 0 0 2] [3 4 3 -5 -13] [-5 0 0 -3 -3] [-5 0 -12 0 -3] [-12 -5 -4 2] [4 4 3 -4 -12] [2 -5 0 -3 -4] [4 -3 5 4 3] [-4 5 2 1 5] [-4 -3 5 -5 -5] [0 -4 2 3 3] [0 5 -3 -13 5] [2 4 -13 -4 -4] [0 -5] [-4 -3 -3 5] [-13 2 1 5 -5] [0 4 -3] [] [-4 -12 2 3 2] [1 0 -12 -4 3] [1 0 1 1 2] [-13 0 0 1 4] [-4 1 -4] [-13 5 -12 2 2] [0 0 0 5] [0 -4] [0 3 2 3 1] [0 0 0 0 4] [3 -5 1 -3 4] [1 -12 1 -3 -12] [5 -3 3 -12 -3] [0 0 2 -12] [0 -3] [0 0 0 0 3] [-4 3 -5 4 2] [4] [] [0 1] [5 4 3 0 -4] [4 -3] [-3 -12 3 5 -12] [0 0 0 5 4] [] [-12 -12 5 -5 2] [-12 -13 -12 -12 2] [] [2 3 3 3] [2 3 1 -13 5] [-3 -3 3 3 -4] [1 5 -12 -3 1] [0 3 -13 3] [0 3 0 3 2] [2 4] [3 -12 -13 -3 1] [0 2 -3 3 2] [4 4 -12 -4 -4] [1 0 3 4 2] [4 2 -12 -12 -12] [3 3 0 -3 -13] [0 0 1] [-12 4 5 -13 -5] [1 0 -4 2 5] [0 0 -3] [-3 4 2 3 -4] [2 3 5 -5] [-3 0 -13 2 2] [-5 3 5 1 -12] [2 -12 2 0 -4] [4 0 0 -3 3] [1 -5 3 -3 1] [0 -12 5] [1 0 -12 -13 4] [0 0 -3] [0 3 0 1 2] [0 0 3 0 -13] [0 0 4] [] [1 0 4 5 1] [-3 -12] [-5 5 1 2 3] [4 2 -3 3] [5 -3 -13 1 3] [-13 -5 4 4] [-3 4 0 0 -4] [5 3 4 -13 -3] [0 5 5 0 -13] [2 1 4 2 2] [0 0 -3] [] [1 5 0 -4 4] [-3 0 1] [3 -5 -12 4 4] [] [0 2 0 -13] [-13 -5 2 1 -13] [-13 2 3 2 5] [-12 0 0 0 1] [0 0 2 -4] [-12 0 -3 1 1] [3 -12 -5 1 2] [0 5 -12] [-12 0 -4] [0 0 0 -13] [0 0 0 0 -5] [0 3 -5 -5 -13] [2 1 4 5 1] [4 1 -13 -5 1] [-13 0 0 4 -5] [-4 1 0 1 2] [0 0 0 -3] [-5 0 3 -13] [] [3 5 -4 5 4] [] [0 0 -12] [-4 0 1 4 4] [5 -12 3 -4] [-13 -4 -4] [4 -12 -3 -3 -12] [-5 0 0 4 3] [-5 -12 1 5 2] [0 1 -3 5 -3] [0 -12 -5] [-13 5 4 -3 2] [-4 2 0 5 -3] [0 0 4 -13] [3 0 5 5 5] [0 -13 -5 -3 4] [2 3 -12 -4 -5] [-3 -13 5 5 -13] [-3 0 0 -12] [] [-12 -3 2 -13 2] [-13 -4 4 1 2] [-13 1 2 -5 2] [0 0 0 4] [-12 3 3 2 -5] [0 -3 -13 3 -3] [5 -13 0 0 -4] [0 0 2] [-13 -4 1 -13 3] [0 -13] [0 0 2 1 -3] [2 5 3 2 -13] [4 2 -13 -12] [3 4 -12 -5] [0 0 0 1] [3 -3 -4 4 -3] [0 -3] [-3 3 2 -13 2]]
f2 = (2*a^4-13*a^3+2*a^2+3*a-3)*x^537+(-3*a)*x^536+(-3*a^4+4*a^3-4*a^2-3*a+3)*x^535+(a^3)*x^534+(-5*a^3-12*a^2+4*a+3)*x^533+(-12*a^3-13*a^2+2*a+4)*x^532+(-13*a^4+2*a^3+3*a^2+5*a+2)*x^531+(-3*a^4+a^3+2*a^2)*x^530+(-13*a)*x^529+(3*a^4-13*a^3+a^2-4*a-13)*x^528+(2*a^2)*x^527+(-4*a^4-13*a+5)*x^526+(-3*a^4+3*a^3-13*a^2-3*a)*x^525+(-5*a^4+2*a^3+3*a^2+3*a-12)*x^524+(4*a^3)*x^523+(2*a^4-5*a^3+2*a^2+a-13)*x^522+(2*a^4+a^3+4*a^2-4*a-13)*x^521+(2*a^4-13*a^3+2*a^2-3*a-12)*x^520+(-12*a^3-3)*x^518+(-13*a^4+5*a^3+5*a^2-13*a-3)*x^517+(-5*a^4-4*a^3-12*a^2+3*a+2)*x^516+(4*a^4-3*a^3-5*a^2-13*a)*x^515+(5*a^4+5*a^3+5*a^2+3)*x^514+(-13*a^3+4*a^2)*x^513+(-3*a^4+5*a^3+2*a-4)*x^512+(2*a^4-3*a^3+4*a^2+5*a-13)*x^511+(-5*a^2-12*a)*x^510+(-3*a^4+5*a^3-3*a^2+a)*x^509+(2*a^4+5*a^3+a^2-12*a-5)*x^508+(3*a^4+4*a^3-5)*x^507+(-12*a^4-3*a^3-3*a^2-12*a+4)*x^506+(-4*a^2-4*a-13)*x^505+(-4*a^3+3*a^2-12*a+5)*x^504+(4*a^4+4*a^3+a^2-4)*x^503+(-12*a^2)*x^502+(4*a^4+5*a^3-4*a^2+5*a+3)*x^500+(-13*a^3+3*a^2-5)*x^498+(-3*a^3)*x^497+(2*a^4+a^3+a-4)*x^496+(-5*a^4+4*a^3-13)*x^495+(a^4-5*a^3-13*a^2+a+4)*x^494+(a^4+5*a^3+4*a^2+a+2)*x^493+(-13*a^4-5*a^3-5*a^2+3*a)*x^492+(-5*a^4)*x^491+(-13*a^3)*x^490+(-4*a^2-12)*x^489+(-12*a^2+5*a)*x^488+(2*a^4+a^3-5*a^2-12*a+3)*x^487+(a^4+a^3-3*a^2-12)*x^486+(-4*a^3+2*a^2)*x^485+(a^4-12)*x^484+(5*a^4+2*a^3+3*a^2+2*a-13)*x^483+(-13*a^4+a^3+2*a^2-5*a-13)*x^482+(-13*a^3+2*a)*x^481+(4*a^4+4*a^3-12*a^2-5*a+3)*x^479+(a^2-3)*x^478+(4*a^4-4*a^3+5*a+1)*x^477+(-3*a^2)*x^475+(2*a^4+2*a^3+4*a^2+a+2)*x^474+(-13*a^4+5*a^2+5*a)*x^473+(-3*a^4-13*a^3+4*a^2+3*a+5)*x^472+(-4*a^4+4*a-3)*x^471+(4*a^3+4*a^2-5*a-13)*x^470+(3*a^4+a^3-13*a^2-3*a+5)*x^469+(3*a^3-3*a^2+2*a+4)*x^468+(3*a^4+2*a^3+a^2+5*a-5)*x^467+(-12*a-3)*x^466+(a^4+5*a^3+4*a^2+1)*x^465+(4*a^2)*x^463+(-13*a^4+3*a^2)*x^462+(2*a^4+a^3+3*a)*x^461+(-3*a^2)*x^460+(4*a^4-13*a^3-12*a^2+1)*x^459+(5*a^2-12*a)*x^458+(a^4-3*a^3+3*a^2-5*a+1)*x^457+(3*a^4-3*a^3+4)*x^456+(-4*a^4+2*a^2-12*a+2)*x^455+(-12*a^4+a^3+5*a^2+3*a-5)*x^454+(2*a^4+2*a^3-13*a^2-3)*x^453+(-5*a^3+5*a^2+3*a+2)*x^452+(-4*a^4+3*a^3+2*a^2+4*a-3)*x^451+(-3*a^2)*x^450+(5*a^4+2*a^3-4*a^2+1)*x^449+(-5*a^4-13*a^3+5*a^2+4*a-12)*x^448+(a^2)*x^447+(-13*a^4-3*a^3+3*a+3)*x^446+(-12*a^4-12*a^3-12*a^2+2*a+4)*x^445+(2*a^4+4*a^3+3*a^2+1)*x^444+(-4*a^4-4*a^3-12*a^2+4*a+4)*x^443+(2*a^4+3*a^3-3*a^2+2*a)*x^442+(a^4-3*a^3-13*a^2-12*a+3)*x^441+(4*a+2)*x^440+(2*a^4+3*a^3+3*a)*x^439+(3*a^3-13*a^2+3*a)*x^438+(a^4-3*a^3-12*a^2+5*a+1)*x^437+(-4*a^4+3*a^3+3*a^2-3*a-3)*x^436+(5*a^4-13*a^3+a^2+3*a+2)*x^435+(3*a^3+3*a^2+3*a+2)*x^434+(2*a^4-12*a^3-12*a^2-13*a-12)*x^432+(2*a^4-5*a^3+5*a^2-12*a-12)*x^431+(4*a^4+5*a^3)*x^429+(-12*a^4+5*a^3+3*a^2-12*a-3)*x^428+(-3*a+4)*x^427+(-4*a^4+3*a^2+4*a+5)*x^426+(a)*x^425+(4)*x^423+(2*a^4+4*a^3-5*a^2+3*a-4)*x^422+(3*a^4)*x^421+(-3*a)*x^420+(-12*a^3+2*a^2)*x^419+(-3*a^4-12*a^3+3*a^2-3*a+5)*x^418+(-12*a^4-3*a^3+a^2-12*a+1)*x^417+(4*a^4-3*a^3+a^2-5*a+3)*x^416+(4*a^4)*x^415+(a^4+3*a^3+2*a^2+3*a)*x^414+(-4*a)*x^413+(5*a^3)*x^412+(2*a^4+2*a^3-12*a^2+5*a-13)*x^411+(-4*a^2+a-4)*x^410+(4*a^4+a^3-13)*x^409+(2*a^4+a^3+a^2+1)*x^408+(3*a^4-4*a^3-12*a^2+1)*x^407+(2*a^4+3*a^3+2*a^2-12*a-4)*x^406+(-3*a^2+4*a)*x^404+(-5*a^4+5*a^3+a^2+2*a-13)*x^403+(5*a^3-3*a^2-3*a-4)*x^402+(-5*a)*x^401+(-4*a^4-4*a^3-13*a^2+4*a+2)*x^400+(5*a^4-13*a^3-3*a^2+5*a)*x^399+(3*a^4+3*a^3+2*a^2-4*a)*x^398+(-5*a^4-5*a^3+5*a^2-3*a-4)*x^397+(5*a^4+a^3+2*a^2+5*a-4)*x^396+(3*a^4+4*a^3+5*a^2-3*a+4)*x^395+(-4*a^4-3*a^3-5*a+2)*x^394+(-12*a^4-4*a^3+3*a^2+4*a+4)*x^393+(2*a^3-4*a^2-5*a-12)*x^392+(-3*a^4-12*a^2-5)*x^391+(-3*a^4-3*a^3-5)*x^390+(-13*a^4-5*a^3+3*a^2+4*a+3)*x^389+(2*a^4)*x^388+(-5*a^4+2*a^3-4*a^2-3*a-13)*x^387+(4*a^4+3*a^3-13*a^2+5*a+4)*x^386+(-13*a^4+5*a^2)*x^385+(-12*a^4+4*a^3-3*a^2+a-5)*x^384+(-13*a^2+a)*x^383+(a^4+4*a^3+4*a+5)*x^382+(-3*a^4+a^3+3*a^2+3*a-12)*x^381+(-12*a^4)*x^378+(a^4+5*a^3-4*a^2-5*a-4)*x^377+(2*a^4-12*a^3+4*a^2+a-3)*x^376+(4*a^4+2*a^3-12*a^2+4*a+5)*x^375+(-13*a^4+2*a^3+5*a^2-3)*x^374+(5*a^4-5*a^2-3*a)*x^373+(-12*a^3-3*a^2+5*a-13)*x^371+(a^4-13*a^3+2*a^2+1)*x^370+(3*a)*x^369+(-3*a^4-4*a^3+a^2+5*a+2)*x^368+(-4*a^4-3*a^3+2*a^2-3*a-4)*x^367+(-5*a^4-4*a^3+3*a^2-12*a-4)*x^366+(-4*a^4-5*a^2-12)*x^365+(4*a^4+5*a^2+a-13)*x^364+(-4*a^2-12*a+3)*x^363+(-5*a^4-13*a^3-5*a^2-3*a-12)*x^362+(-3*a^4+5*a^2-5)*x^361+(4*a^4-12*a^3-3*a^2-12*a-3)*x^360+(-13*a^4-5*a^3-3*a^2+4*a)*x^359+(3*a^4)*x^358+(5*a^4-4*a^2-3*a+5)*x^356+(-3*a^4+5*a^3-4*a+1)*x^355+(-4*a^4+5*a^3+2*a-4)*x^354+(-13*a^2+5*a)*x^353+(-3*a^4-5*a^3-13*a^2+5*a+2)*x^352+(2*a^4+3*a^3+4*a^2-4*a-13)*x^349+(4*a^4-12*a^3-12*a)*x^348+(-3*a^4-12*a^3+2*a^2-5*a+5)*x^347+(a^3+2)*x^346+(a^4+3*a^2-12)*x^345+(-4*a^4-4*a^3-12*a+4)*x^344+(-5*a^4-13*a^3+a^2-3*a-3)*x^342+(5*a^2)*x^341+(-4*a^4+5*a^3-4*a^2-12*a-3)*x^340+(-5*a)*x^339+(2*a^4-5*a^3-13*a^2+5*a+5)*x^338+(3*a^4-13*a^3+3*a+5)*x^337+(-5*a^4+3*a^3-3*a^2-12*a-4)*x^336+(-12*a^4+3*a^3-3*a^2-3*a+2)*x^335+(5*a^4-3*a^3-4*a^2-4*a+4)*x^334+(a^4)*x^333+(-13*a^4+5*a^3-3*a^2+a+4)*x^332+(a^4+4*a^3-4*a^2-5*a+1)*x^331+(2*a^4+2*a^3+3)*x^330+(-5*a^4-4*a^3+a^2+3)*x^329+(4*a^4-13*a^3-13*a^2-3*a+3)*x^328+(a^4+2*a^3+2*a^2-4*a+1)*x^327+(a^4-12*a^3-4*a^2-13*a-4)*x^326+(-4*a^4-4*a^3+5*a^2-4*a+3)*x^325+(2*a^4-5*a^3-3*a^2+a-5)*x^324+(-3*a^4-3*a^3-13*a^2-13)*x^323+(-13*a^4+a^3-12*a^2-3*a-5)*x^322+(-4*a^4-5*a^3-4*a^2-12*a+1)*x^320+(3*a^4+4*a^3-5)*x^319+(-5*a^4+4*a^3+4*a^2+4*a+2)*x^318+(2*a^4)*x^317+(-12*a^4-3*a^3+a+4)*x^316+(a^2)*x^315+(-12*a^4)*x^314+(2*a^2)*x^313+(-3*a^4-13*a^3+4*a^2-5*a+5)*x^312+(a^4-5*a^2+5*a+2)*x^310+(-5*a^2)*x^309+(-12*a^4-12*a^3-3*a-12)*x^308+(5*a^4+4*a^3+5*a^2+2)*x^307+(2*a^4+1)*x^306+(-13*a^3+4*a^2+a+5)*x^305+(-3*a^4+4*a^3+a^2-13*a+3)*x^304+(-3*a^4+3*a^3-5*a^2-13*a-4)*x^303+(-3*a^2)*x^302+(4*a+1)*x^301+(2*a^4+4*a^3+3*a^2-4*a+3)*x^300+(2*a+4)*x^299+(-13*a^4+2*a^3+4*a^2+2*a+4)*x^298+(-3*a^2)*x^297+(-4*a^4-3*a^3+5*a^2+2*a)*x^296+(-4*a^4+a^3+3*a^2+2*a+3)*x^295+(3*a^4-12*a^3-3*a^2-12*a)*x^294+(-3*a^4-13*a^3-4*a^2+4*a+1)*x^293+(-12*a^4-12*a^3+3*a^2+5)*x^292+(4*a^4-5*a^3+4*a^2+2*a+3)*x^291+(4*a^4+2*a^2+4*a+4)*x^290+(3*a^4+5*a^3-12*a^2+4*a-3)*x^289+(-12*a^2)*x^288+(2*a^3+5*a^2-5*a-5)*x^287+(-5*a^4-13*a^3+2*a^2+a-4)*x^286+(-5*a^3)*x^285+(-5)*x^284+(a^4-5*a^2+2*a+2)*x^283+(a^4+3*a^3+2*a^2+3*a-5)*x^282+(-4*a^4-12*a^3-5*a^2+a-5)*x^281+(-4*a^3+5*a^2-3*a+4)*x^280+(3*a^2+5*a)*x^279+(-12*a^4+a^3+a^2-13*a+1)*x^278+(-13*a^4+3*a^3-13*a^2-3*a+5)*x^277+(a^4+4*a^2-4*a-3)*x^276+(4*a^4+5*a^3+5*a^2+2*a-4)*x^275+(4*a^4+5*a^3+3*a^2-12*a+5)*x^274+(-13*a^4-5*a^3+3*a^2-3*a+2)*x^273+(-12*a)*x^272+(5*a^4-12*a^3+2*a^2-4*a+5)*x^271+(-12*a^3-13*a^2-13)*x^270+(3*a^4-5*a^3+2*a^2-13*a-3)*x^269+(5*a^4-12)*x^268+(-5*a^4-4*a^3)*x^267+(2*a^4-4*a^3-3*a-4)*x^266+(-13*a+2)*x^265+(3*a^3-13*a^2+4*a+1)*x^264+(5*a^4+a^3-12*a^2-5*a)*x^263+(-4*a^4+a^3-5*a^2+5*a-12)*x^262+(4)*x^261+(-3*a^4+a^3-3*a^2+5*a)*x^260+(-13*a^4+5*a^3+3*a^2-3*a-4)*x^259+(-4*a^3+4*a^2+5*a+5)*x^258+(-5*a^4+4*a^3-4*a^2-3*a-5)*x^257+(-3*a^4+4*a^3-12*a^2-13*a-4)*x^256+(-5*a^3-5*a^2-13*a-13)*x^255+(5*a^4-4*a^3+2*a^2-3*a-5)*x^254+(a^4+a^3+3*a^2+a-13)*x^253+(-5*a^4-3*a^3-13*a^2+2*a+3)*x^252+(-5*a^4-3*a^3-13*a^2+4*a-4)*x^250+(3*a^4+5*a^3-4*a^2+4*a-3)*x^249+(4*a^3-4*a^2-13*a+3)*x^248+(2*a^4-5*a^3+2*a)*x^247+(2*a^4-4*a^3+5*a^2-12*a-4)*x^246+(-4*a^4-13*a^3+2*a^2-13*a-5)*x^245+(-4*a^2+3*a-13)*x^244+(-4*a^4-4*a^3-13*a^2-12*a)*x^242+(-12*a^4-12*a^3-12*a^2+5*a+5)*x^241+(4*a^2)*x^240+(3*a^4-12*a^3-13*a^2+2)*x^239+(a^3-12*a^2-13*a)*x^238+(3*a^4+a^3-5*a^2+2*a-12)*x^237+(-12*a^3-4*a^2+5)*x^236+(-13*a^2)*x^235+(4*a^4+3*a^3+a^2-12)*x^234+(4*a^4+a+2)*x^232+(-3*a^4-13*a^3+5*a^2+5)*x^231+(-12*a^4-4*a^3-3*a^2-5*a)*x^230+(-5*a^4+3*a^3+5*a+1)*x^229+(4*a^4+4*a^3+4*a)*x^228+(a^3+a^2-12*a)*x^227+(-4*a^4+4*a^3+4*a^2+4*a-5)*x^226+(3*a^4)*x^225+(-3*a^4-12*a^3-12*a^2-12*a-3)*x^224+(-13*a^4+2*a^3+3*a^2-4*a+2)*x^223+(4*a^3-13*a+2)*x^222+(-4*a^4+2*a^3+3*a^2+5*a-12)*x^221+(-4*a^4-5*a^3+2*a^2-5*a-4)*x^220+(-3*a^4-4)*x^219+(2*a^4-12*a^3-4*a^2+4*a-13)*x^218+(4*a^4-13*a^3-4*a^2-5*a-4)*x^217+(5*a)*x^216+(a^4-12*a^3+a^2+2*a-3)*x^215+(-13*a^4-4*a^3+5*a^2+4*a-4)*x^213+(-4*a^3)*x^212+(-12*a^4-4*a-13)*x^211+(-3*a^3-4*a^2-3*a-3)*x^210+(-13*a^4)*x^209+(4*a^4+4*a^3-3*a^2-4*a+2)*x^208+(2)*x^207+(5*a^3+5*a^2-4*a+5)*x^206+(-3*a^4-12*a^3-3*a+4)*x^205+(-4*a^4-13*a^3+4*a^2+a+4)*x^204+(-13*a^2-3)*x^203+(a^4-4*a^2+3)*x^202+(-5*a^4-13*a^3-3*a^2+2*a)*x^201+(4*a^4+3*a^3+5)*x^200+(-13*a^4-3*a^3-5*a^2+5*a+1)*x^199+(a^4-5*a^3+5*a^2-5*a+3)*x^198+(3*a^4-12*a^3-12*a^2+3)*x^197+(3*a^4-3*a^2+5*a-5)*x^196+(a^3-13*a^2-13*a-4)*x^195+(-4*a^4+5*a^3+3*a^2-5*a-12)*x^194+(-4*a^4+2*a^3+3*a-3)*x^193+(5*a^4-12*a^2+2)*x^192+(a^4-4*a^3-12*a^2-5)*x^191+(2*a^4+5*a^3-5*a^2+3*a+3)*x^190+(-13*a^4-13*a^3-4*a^2+3*a-3)*x^189+(-12*a^4-5*a^3+5*a^2-3*a-12)*x^188+(-13*a^4+4*a^3)*x^187+(-5*a^4+3*a^3+3*a^2-4*a+4)*x^185+(-5*a^4+a^3-13*a^2+4*a-5)*x^184+(-13*a)*x^183+(4*a^4-5*a^3-3*a^2+3*a)*x^182+(2*a^4-12*a^3-3*a^2+2*a-3)*x^181+(-13)*x^180+(-4*a^4-13*a^3+2*a^2-13*a-5)*x^178+(a^4-3*a-13)*x^177+(3*a^4+3*a^3+2*a^2-4*a-3)*x^176+(-5*a^4+4*a^3-5*a-4)*x^175+(a^4-4*a^3+2*a^2+2*a-12)*x^174+(-13*a^4+3*a)*x^173+(3*a^4+4*a^3-3*a^2-13*a+5)*x^172+(-12*a^4+5*a^3+2*a^2+3*a-5)*x^171+(-5*a^4-13*a^3-4*a^2+4*a+2)*x^170+(a^4+5*a^3+2*a^2-3)*x^169+(-3*a^4+3*a^3-3*a^2-3*a+4)*x^168+(4*a^4-4*a^3-12*a^2+4*a+2)*x^167+(-4*a^2-12*a-13)*x^165+(-13*a^4+4*a^3+a-4)*x^164+(-13*a^4-5*a^3+3*a^2-13*a+4)*x^163+(-5*a^3)*x^162+(-13*a^4-13*a^3-12*a^2+4*a-5)*x^161+(-13*a^4-4*a^3-5*a^2+2*a+3)*x^160+(2*a^4-13*a^3+4*a^2-5)*x^157+(5*a^4+4*a^3-12*a^2+3*a+1)*x^156+(-12*a^4-4*a^3+2*a^2-12)*x^155+(-13*a^4-5*a^3-12*a^2+4*a-12)*x^154+(-13*a^4-5*a^3-12*a^2+5*a+5)*x^153+(3*a^4-3*a^3+a^2+4*a-5)*x^152+(-13*a^3-3*a^2-3)*x^150+(3*a^2-12)*x^149+(-3*a^2-12)*x^148+(5*a^4+a^2)*x^146+(3*a^2+a+5)*x^145+(-5*a^4)*x^144+(-12*a^4-3*a^3-5*a^2-5*a+4)*x^143+(-5*a^4-3*a^3+4*a^2+3*a+5)*x^142+(a^4+3)*x^141+(-12*a^4-12*a^3-4*a+3)*x^139+(-12*a)*x^138+(4*a^4+4*a^3+2*a^2-13*a-12)*x^137+(5*a^4)*x^136+(-3*a^4-5*a^3+3*a^2-4*a-12)*x^135+(5*a^4+2*a^2)*x^134+(4*a^4-4*a^3+4*a^2-13*a+4)*x^133+(3)*x^132+(2*a^4-13*a^3-12*a^2+3*a+2)*x^131+(5*a^4+5*a^3-4*a^2+4*a+3)*x^129+(a^4+a^3-12*a^2-3*a-5)*x^128+(5*a^4+5*a^3-5*a^2+2*a-4)*x^127+(5*a^2)*x^126+(-4)*x^125+(-12*a^4-13*a^3-13*a^2-3*a+2)*x^124+(-4*a^4+4*a^3-4*a^2+4)*x^123+(-3*a^4-13*a^3-13*a^2+5*a-3)*x^122+(3)*x^121+(-3)*x^120+(3*a^4-13*a^3+4*a^2-13*a-3)*x^119+(-12*a^4-13*a^3-5*a^2+a)*x^118+(-3)*x^117+(4*a^4-5*a^3+3*a^2-3*a+4)*x^116+(-12*a^4-3*a^3-3*a^2-5*a+3)*x^115+(-4*a^4-5*a^3+2*a^2+4*a+4)*x^114+(-13*a^4-12*a^3+3*a^2+3*a-3)*x^113+(2*a^3)*x^112+(-4*a^4-13*a^3-3*a^2+2*a-3)*x^111+(a^4+3*a^3-4*a^2-12*a+1)*x^110+(-13*a^4+a^3+2*a^2+a+3)*x^109+(-3*a^3+5*a)*x^108+(-12*a^4+2*a^3+4*a^2+4*a+4)*x^107+(4*a^4-13*a^3+4*a^2+4*a+3)*x^106+(-5*a^4-4*a^3+a^2+3*a)*x^105+(-13*a^4+3*a^3+2*a^2+2*a+3)*x^104+(-12)*x^103+(-12*a^3+4*a^2-5*a-12)*x^102+(-12*a^4+4*a^3-3*a^2+a-12)*x^101+(a^4-3*a^3-13*a^2-4*a-12)*x^100+(a^4-13*a^3+3*a^2+a-4)*x^99+(-13*a^4)*x^98+(5*a^4-13*a^3-4*a^2-4*a)*x^97+(a^4+2*a^3+a^2+1)*x^96+(-3*a^4-3*a^3+2*a^2-4*a-5)*x^95+(3*a^4-3*a^3-5*a^2-12*a-4)*x^94+(5*a^4-4*a^3-4*a^2)*x^93+(-12*a^4-5*a^3+a^2+3*a-13)*x^92+(-12*a^3+4*a+1)*x^91+(5*a^4+5*a^3+a^2+a-12)*x^90+(-4*a^4+2*a^2+5*a-5)*x^89+(5*a^4+a^3-4*a^2-3*a+5)*x^88+(-3*a^4-13*a)*x^87+(3*a^4-3*a^3-4*a^2-4)*x^86+(-4*a^4-4*a^3+3*a^2+5*a+3)*x^85+(3*a^4+5*a^3-5*a^2+4*a-4)*x^84+(-12)*x^83+(a^4-5*a^3+2*a^2+2*a-12)*x^82+(5*a^4+5*a^3+5*a^2-5*a-12)*x^81+(-5*a^2)*x^80+(-5*a^4+5*a^3-3*a^2-3*a+1)*x^79+(-12*a^4+5*a^3-4*a)*x^78+(4*a^4+4*a^3-13*a^2+4*a+2)*x^77+(-12*a^4+3*a^3-13*a^2-4*a-12)*x^76+(-4*a^4+5*a^3+2*a^2+3*a+4)*x^75+(4*a^4+a^3)*x^74+(-12*a^4-5)*x^73+(-3*a^4+2*a^3+5*a^2+5*a)*x^72+(3*a^4+3*a^3+4*a+5)*x^71+(4*a^2)*x^70+(3*a^4+3*a^3+a^2-5*a-4)*x^69+(-3*a^4+3*a^3+a^2-4*a-13)*x^68+(-13*a^4+2*a^2-13*a-4)*x^67+(2*a^4-12*a^3-13*a^2-4*a-13)*x^66+(4)*x^65+(3*a^4+2*a^3+a+1)*x^64+(a^4-3*a^3-5*a^2-13*a-4)*x^63+(4*a^4+a^3-13*a^2-5*a-13)*x^62+(5*a^4-3*a^3-5*a^2-13*a+2)*x^60+(3*a^4-12*a^2)*x^58+(5*a^3-12*a^2+2*a+4)*x^56+(-12*a^4+5*a^2+3*a+3)*x^55+(-3*a^4+4*a^3+4*a^2+a+3)*x^54+(-4*a^4+3*a^3+a^2-4)*x^53+(a^4-12*a^3+3*a^2+a)*x^52+(3*a^4+5*a^3-5*a-13)*x^51+(2*a+5)*x^50+(a^4+a^3+2*a^2+5*a+3)*x^49+(-12*a^4+3*a^3+5*a^2+5*a-5)*x^48+(-3*a^4+4*a^3+4*a^2-4*a-13)*x^47+(-3*a^3-3*a^2+2*a+2)*x^46+(5*a^4-13*a^3-4*a^2+4*a+3)*x^45+(3*a^4-5*a^3-13*a^2+2*a-12)*x^44+(-5*a^4-13*a^3-12*a^2-13*a-12)*x^43+(-5*a^4+2*a^3+5*a^2+2*a)*x^42+(5*a^4-3*a^3+5*a^2+2*a-12)*x^41+(a^2+a-13)*x^40+(4*a)*x^39+(5*a^4+3*a^3-5*a^2+a+5)*x^38+(-5*a^3-4*a+1)*x^37+(5*a^4-5*a^3+a^2-12)*x^36+(5*a^2+5)*x^35+(a^4-5*a^3+a+2)*x^34+(-4)*x^33+(-12*a^3+3*a^2)*x^32+(-12*a^4+2*a^3+a^2+4*a+5)*x^31+(a)*x^30+(2*a^4+a^3-5*a^2+2*a+4)*x^29+(-4*a^3)*x^28+(-13*a^4+4*a^3+2*a^2-4*a+1)*x^27+(3*a^4-5*a^2+3*a+4)*x^26+(2*a^3)*x^25+(-3*a^2)*x^22+x^21+(4*a^2+2*a+4)*x^20+(-5*a^4-12*a^3-12*a^2+4*a+5)*x^19+(-12*a^3-3*a-4)*x^18+(5*a)*x^17+(5*a)*x^16+(a^3)*x^15+(-5)*x^14+(4)*x^13+(4*a^3)*x^12+(2*a^4-12*a^3+a-5)*x^11+(4*a^4+a^3+2*a^2-5*a-4)*x^10+(a^4+4*a^3+2*a^2+5*a-12)*x^7+(a^4-5*a^3+3*a^2+a-4)*x^6+(-13*a^3)*x^5+(-4*a^4+2*a^3+2*a^2+a)*x^3+(-12*a^4+2*a^3+2*a^2-3*a+2)*x^2+(3*a^4+5*a^3+a^2+2*a+1)*x+(a^4-4*a^3-13*a^2-5*a-4)
Aborted

@wbhart
Copy link
Collaborator

wbhart commented Oct 9, 2017

My guess is you didn't configure NTL correctly to use GMP as its large integer package. This causes the integer format to be incompatible with Flint.

@infinity0
Copy link

Our configuration is here: https://anonscm.debian.org/cgit/debian-science/packages/libntl.git/tree/debian/rules#n22

Does that look wrong? NTL_GMP_LIP is actually not a typo (for LIB), LIP is correct and appears many times in the sources.

@wbhart
Copy link
Collaborator

wbhart commented Oct 9, 2017 via email

@infinity0
Copy link

This is Debian so everything is installed into system locations (/usr/lib and /usr/lib/$(multiarch)) and is found automatically. My NTL build log confirms the flag is set:

[..]
make[1]: Leaving directory '/<<PKGBUILDDIR>>/src'
./gen_gmp_aux > ../include/NTL/gmp_aux.h
NTL_GMP_LIP flag set
NTL_ZZ_NBITS = 64
[..]

We've also been building NTL and Flint with these flags since yonks, FLINT 2.5.2 works for NTL 9.9.1:

https://buildd.debian.org/status/fetch.php?pkg=flint&arch=amd64&ver=2.5.2-15&stamp=1485219493&raw=0

But fails for NTL 10.5.0:

https://people.debian.org/~infinity0/sage/flint_amd64-2017-08-31T12:19:51Z.build (1.8 MB)
https://people.debian.org/~infinity0/sage/flint_i386-2017-09-01T08:53:17Z.build (1.9 MB)

@wbhart
Copy link
Collaborator

wbhart commented Oct 9, 2017 via email

@infinity0
Copy link

According to doc/config.txt it looks in DEF_PREFIX which we're setting to /usr in the Debian package already. More generally, I really don't think NTL config issues are the problem here given we didn't change anything relevant between 9.9.1 and 10.5.0.

@infinity0
Copy link

Are you having problems reproducing this issue?

@wbhart
Copy link
Collaborator

wbhart commented Oct 9, 2017 via email

@infinity0
Copy link

infinity0 commented Oct 19, 2017

Very strange, I can reproduce the bug no problem by building our Debian NTL 10.5.0 package using our sbuild which builds it in a clean chroot environment. However, I cannot reproduce the bug when building exactly the same source code, with the same ./configure settings in my own computer in the host system.

Hopefully you can confirm this for yourself using the binaries I built. There is a test-flint.sh in there, cd into the flint directory and run either:

  • NTL_HOME=/path/to/usr-bad ../test-flint.sh or
  • NTL_HOME=/path/to/usr-good ../test-flint.sh

The bad one was compiled inside sbuild, the good one was compiled on my host system. I've uploaded a diffoscope analysis of the diff between the two binaries but haven't looked at it in detail yet.

I will also need to figure out what the differences between sbuild vs host system is. Toolchain programs being at different versions is the obvious culprit - my host system is "Debian testing" which is older than what sbuild runs ("Debian unstable") - however the failures that @SnarkBoojum and I reported originally were probably also using older toolchain programs as well.

@infinity0
Copy link

It looks like it might be due to the Debian maintainer from 6 years ago deciding to set MAKEFLAGS=-jN in the Debian packaging files.

However I wasn't able to reproduce the FLINT test failures by giving MAKEFLAGS=-j4 to upstream NTL. The Debian packaging files has some too-smart-for-its-own-good extra Makefile rules to avoid running the wizard, so I suspect that's what's to blame. ("Recursive Make considered harmful"). Not sure about the NTL from 6 years ago, but today we can just set TUNE=generic for that.

So I'll fix up the Debian packaging and run some more tests to confirm there's no problem in FLINT. Sorry for the noise and thanks for your patience.

@wbhart
Copy link
Collaborator

wbhart commented Nov 26, 2019

Unable to replicate.

@wbhart wbhart closed this as completed Nov 26, 2019
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants