forked from plumed/plumed2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LogMFD.cpp
1144 lines (919 loc) · 42.2 KB
/
LogMFD.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Copyright (c) 2019
National Institute of Advanced Industrial Science and Technology (AIST), Japan.
This file contains module for LogMFD method proposed by Tetsuya Morishita(AIST).
The LogMFD module is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The LogMFD module is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with plumed. If not, see <http://www.gnu.org/licenses/>.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
//+PLUMEDOC LOGMFDMOD_BIAS LOGMFD
/*
Used to perform LogMFD, LogPD, and TAMD/d-AFED.
\section LogMFD LogMFD
Consider a physical system of \f$N_q\f$ particles, for which the Hamiltonian is given as
\f[
{H_{\rm MD}}\left( {\bf{\Gamma}} \right) = \sum\limits_{j = 1}^{{N_q}} {\frac{{{\bf{p}}_j^2}}{{2{m_j}}}} + \Phi \left( {\bf{q}} \right)
\f]
where \f${\bf q}_j\f$, \f${\bf p}_j\f$ (\f$\bf{\Gamma}={\bf q},{\bf p}\f$), and \f$m_j\f$ are the position, momentum, and mass of particle \f$j\f$ respectively,
and \f$\Phi\f$ is the potential energy function for \f${\bf q}\f$.
The free energy \f$F({\bf X})\f$ as a function of a set of \f$N\f$ collective variables (CVs) is given as
\f{eqnarray*}{
F\left( {{\bf X}} \right) &=& - {k_B}T\log \int {\exp \left[ { - \beta {H_{\rm MD}}} \right]\prod\limits_{i = 1}^N {\delta \left( {{s_i}\left( {{\bf q}} \right) - {X_i}} \right)} d{\bf{\Gamma }}} \\
&\simeq& - {k_B}T\log \int {\exp \left[ { - \beta \left\{ {{H_{\rm MD}} + \sum\limits_i^N {\frac{{{K_i}}}{2}{{\left( {{s_i}\left( {{\bf q}} \right) - {X_i}} \right)}^2}} } \right\}} \right]} d{\bf{\Gamma }}
\f}
where \f$\bf{s}\f$ are the CVs, \f$k_B\f$ is Boltzmann constant, \f$\beta=k_BT\f$,
and \f$K_i\f$ is the spring constant which is large enough to invoke
\f[
\delta \left( x \right) = \lim_{k \to \infty } \sqrt {\beta k/2\pi} \exp \left( -\beta kx^2/2 \right)
\f]
In mean-force dynamics, \f${\bf X}\f$ are treated as fictitious dynamical variables, which are associated with the following Hamiltonian,
\f[
{H_{\rm log}} = \sum\limits_{i = 1}^N {\frac{{P_{{X_i}}^2}}{{2{M_i}}} + \Psi \left( {{\bf X}} \right)}
\f]
where \f${P_{{X_i}}}\f$ and \f$M_i\f$ are the momentum and mass of \f$X_i\f$, respectively, and \f$\Psi\f$ is the potential function for \f${\bf X}\f$.
We assume that \f$\Psi\f$ is a functional of \f$F({\bf X})\f$; \f$Ψ[F({\bf X})]\f$. The simplest form of \f$\Psi\f$ is \f$\Psi = F({\bf X})\f$,
which corresponds to TAMD/d-AFED \cite AbramsJ2008, \cite Maragliano2006 (or the extended Lagrangian dynamics in the limit of the adiabatic decoupling between \f$\bf{q}\f$ and \f${\bf X}\f$).
In the case of LogMFD, the following form of \f$\Psi\f$ is introduced \cite MorishitaLogMFD;
\f[
{\Psi _{\rm log}}\left( {{\bf X}} \right) = \gamma \log \left[ {\alpha F\left( {{\bf X}} \right) + 1} \right]
\f]
where \f$\alpha\f$ (ALPHA) and \f$\gamma\f$ (GAMMA) are positive parameters. The logarithmic form of \f$\Psi_{\rm log}\f$ ensures the dynamics of \f${\bf X}\f$ on a much smoother energy surface [i.e., \f$\Psi_{\rm log}({\bf X})\f$] than \f$F({\bf X})\f$, thus enhancing the sampling in the \f${\bf X}\f$-space. The parameters \f$\alpha\f$ and \f$\gamma\f$ determine the degree of flatness of \f$\Psi_{\rm log}\f$, but adjusting only \f$\alpha\f$ is normally sufficient to have a relatively flat surface (with keeping the relation \f$\gamma=1/\alpha\f$).
The equation of motion for \f$X_i\f$ in LogMFD (no thermostat) is
\f[
{M_i}{\ddot X_i} = - \left( {\frac{{\alpha \gamma }}{{\alpha F + 1}}} \right)\frac{{\partial F}}{{\partial {X_i}}}
\f]
where \f$-\partial F/\partial X_i\f$ is evaluated as a canonical average under the condition that \f${\bf X}\f$ is fixed;
\f{eqnarray*}{
- \frac{{\partial F}}{{\partial {X_i}}} &\simeq& \frac{1}{Z}\int {{K_i}\left( {{s_i}\left( {{\bf q}} \right) - {X_i}} \right)\exp \left[ { - \beta \left\{ {{H_{\rm MD}} + \sum\limits_i^N {\frac{{{K_i}}}{2}{{\left( {{s_i}\left( {{\bf q}} \right) - {X_i}} \right)}^2}} } \right\}} \right]} d{\bf{\Gamma }}\\
&\equiv& {\left\langle {{K_i}\left( {{s_i}\left( {{\bf q}} \right) - {X_i}} \right)} \right\rangle _{{\bf X}}}
\f}
where
\f[
Z = \int {\exp \left[ { - \beta \left\{ {{H_{\rm MD}} + \sum\limits_i^N {\frac{{{K_i}}}{2}{{\left( {{s_i}\left( {{\bf q}} \right) - {X_i}} \right)}^2}} } \right\}} \right]} d{\bf{\Gamma }}
\f]
The mean-force (MF) is practically evaluated by performing a shot-time canonical MD run each time \f${\bf X}\f$ is updated according to the equation of motion for \f${\bf X}\f$.
If the canonical average for the MF is effectively converged, the dynamical variables \f${\bf q}\f$ and \f${\bf X}\f$ are decoupled and they evolve adiabatically, which can be exploited for the on-the-fly evaluation of \f$F({\bf X})\f$. I.e., \f$H_{\rm log}\f$ should be a constant of motion in this case, thus \f$F({\bf X})\f$ can be evaluated each time \f${\bf X}\f$ is updated as
\f[
F\left( {{{\bf X}}\left( t \right)} \right) = \frac{1}{\alpha} \left[
\exp \frac{1}{\gamma} \left\{ \left( H_{\rm log} - \sum_i \frac{P_{X_i}^2}{2M_i} \right) \right\} - 1 \right]
\f]
This means that \f$F({\bf X})\f$ can be constructed without post processing (on-the-fly free energy reconstruction). Note that the on-the-fly free energy reconstruction is also possible in TAMD/d-AFED if the Hamiltonian-like conserved quantity is available (e.g., the Nose-Hoover type dynamics).
\section LogPD LogPD
The accuracy in the MF is critical to the on-the-fly free energy reconstruction. To improve the evaluation of the MF, parallel-dynamics (PD) is incorporated into LogMFD, leading to logarithmic parallel-dynamics (LogPD) \cite MorishitaLogPD.
In PD, the MF is evaluated by a non-equilibrium path-ensemble based on the Crooks-Jarzynski non-equilibrium work relation. To this end, multiple replicas of the MD system which run in parallel are introduced. The CVs [\f${\bf s}({\bf q})\f$] in each replica is restrained to the same value of \f${\bf X}(t)\f$. A canonical MD run with \f$N_m\f$ steps is performed in each replica, then the MF on \f$X_i\f$ is evaluated using the MD trajectories from all replicas.
The MF is practically calculated as
\f[
- \frac{{\partial F}}{{\partial {X_i}}} = \sum\limits_{k = 1}^{{N_r}} {{W_k}} \sum\limits_{n = 1}^{{N_m}} {\frac{1}{{{N_m}}}{K_i}\left[ {{s_i}\left( {{{\bf q}}_n^k} \right) - {X_i}} \right]}
\f]
where \f${\bf q}^k_n\f$ indicates the \f${\bf q}\f$-configuration at time step \f$n\f$ in the \f$N_m\f$-step shot-time MD run in the \f$k\f$th replica among \f$N_r\f$ replicas. \f$W_k\f$ is given as
\f[
{W_k} = \frac{{{e^{ - \beta {w_k}\left( t \right)}}}}{{\sum\limits_{k=1}^{{N_r}} {{e^{ - \beta {w_k}\left( t \right)}}} }}
\f]
where
\f[
{w_k}\left( t \right) = \int\limits_{{X_0}}^{X\left( t \right)} {\sum\limits_{i=1}^N {\frac{{\partial H_{\rm MD}^k}}{{\partial {X_i}}}d{X_i}} }
\f]
\f[
H_{\rm MD}^k\left( {{\bf{\Gamma }},{{\bf X}}} \right) = {H_{\rm MD}}\left( {{{\bf{\Gamma }}^k}} \right) + \sum\limits_{i = 1}^N {\frac{{{K_i}}}{2}{{\left( {s_i^k - {X_i}} \right)}^2}}
\f]
and \f$s^k_i\f$ is the \f$i\f$th CV in the \f$k\f$th replica.
\f$W_k\f$ comes from the Crooks-Jarzynski non-equilibrium work relation by which we can evaluate an equilibrium ensemble average from a set of non-equilibrium trajectories. Note that, to avoid possible numerical errors in the exponential function, the following form of \f$W_k\f$ is instead used in PLUMED,
\f[
{W_k}\left( t \right) = \frac{{\exp \left[ { - \beta \left\{ {{w_k}\left( t \right) - {w_{\min }}\left( t \right)} \right\}} \right]}}{{\sum\nolimits_k {\exp \left[ { - \beta \left\{ {{w_k}\left( t \right) - {w_{\min }}\left( t \right)} \right\}} \right]} }}
\f]
where
\f[
{w_{\min }}\left( t \right) = {\rm Min}_k\left[ {{w_k}\left( t \right)} \right]
\f]
With the MF evaluated using the PD approach, reconstructing free energy profiles can be performed more efficiently (requiring less elapsed computing time) in LogPD than with a single MD system in LogMFD. In the case that there exists more than one stable state separated by high energy barriers in the hidden subspace orthogonal to the CV-subspace, LogPD is particularly of use to incorporate all the contributions from such hidden states with appropriate weights (in the limit \f$N_r\to\infty\f$ ).
Note that LogPD calculations should always be initiated with an equilibrium \f${\bf q}\f$-configuration in each replica, because the Crooks-Jarzynski non-equilibrium work relation is invoked. Also note that LogPD is currently available only with Gromacs, while LogMFD can be performed with LAMMPS, Gromacs, and NAMD.
\section Thermostat Using LogMFD/PD with a thermostat
Introducing a thermostat on \f${\bf X}\f$ is often recommended in LogMFD/PD to maintain the adiabatic decoupling between \f${\bf q}\f$ and \f${\bf X}\f$. In the framework of the LogMFD approach, the Nose-Hoover type thermostat and the Gaussian isokinetic (velocity scaling) thermostat can be used to control the kinetic energy of \f${\bf X}\f$.
\subsection Nose-Hoover Nose-Hoover LogMFD/PD
The equation of motion for \f$X_i\f$ coupled to a Nose-Hoover thermostat variable \f$\eta\f$ (single heat bath) is
\f[
{M_i}{\ddot X_i} = - \left( {\frac{{\alpha \gamma }}{{\alpha F + 1}}} \right)\frac{{\partial F}}{{\partial {X_i}}} - {M_i}{\dot X_i}\dot \eta
\f]
The equation of motion for \f$\eta\f$ is
\f[
Q\ddot \eta = \sum\limits_{i = 1}^N {\frac{{P_{{X_i}}^2}}{{{M_i}}} - N{k_B}T}
\f]
where \f$N\f$ is the number of the CVs. Since the following pseudo-Hamiltonian is a constant of motion in Nose-Hoover LogMFD/PD,
\f[
H_{\rm log}^{\rm NH} = \sum\limits_{i = 1}^N {\frac{{P_{{X_i}}^2}}{{2{M_i}}} + \gamma \log \left[ {\alpha F\left( {{\bf X}} \right) + 1} \right] + \frac{1}{2}Q{{\dot \eta }^2} + N{k_B}T\eta}
\f]
\f$F({\bf X}(t))\f$ is obtained at each MFD step as
\f[
F\left( {{{\bf X}}\left( t \right)} \right) = \frac{1}{\alpha }\left[ {\exp \left\{ {{{ \frac{1}{\gamma} \left( {H_{\rm log}^{\rm NH} - \sum_i {\frac{{P_{{X_i}}^2}}{{2{M_i}}}} - \frac{1}{2}Q{{\dot \eta }^2} - N{k_B}T\eta} \right)} }} \right\} - 1} \right]
\f]
\subsection VS Velocity scaling LogMFD/PD
The velocity scaling algorithm (which is equivalent to the Gaussian isokinetic dynamics in the limit \f$\Delta t\to 0\f$) can also be employed to control the velocity of \f${\bf X}\f$, \f$\bf{V}_x\f$.
The following algorithm is introduced to perform isokinetic LogMFD calculations \cite MorishitaVsLogMFD;
\f{eqnarray*}{
{V_{{X_i}}}\left( {{t_{n + 1}}} \right) &=& V_{X_i}^\prime \left( {{t_n}} \right) + \Delta t\left[ { - \left( {\frac{{\alpha \gamma }}{{\alpha F\left( {{t_n}} \right) + 1}}} \right)\frac{{\partial F\left( {{t_n}} \right)}}{{\partial {X_i}}}} \right]\\
S\left( {{t_{n + 1}}} \right) &=& \sqrt {\frac{{N{k_B}T}}{{\sum\limits_i {{M_i}V_{{X_i}}^2\left( {{t_{n + 1}}} \right)} }}} \\
{V_{{X_i}}}^\prime \left( {{t_{n + 1}}} \right) &=& S\left( {{t_{n + 1}}} \right){V_{{X_i}}}\left( {{t_{n + 1}}} \right)\\
{X_i}\left( {{t_{n + 1}}} \right) &=& {X_i}\left( {{t_n}} \right) + \Delta t V_{X_i}^\prime \left( {{t_{n + 1}}} \right)\\
{\Psi_{\rm log}}\left( {{t_{n + 1}}} \right) &=& N{k_B}T\log S\left( {{t_{n + 1}}} \right) + {\Psi_{\rm log}}\left( {{t_n}} \right)\\
F\left( {{t_{n + 1}}} \right) &=& \frac{1}{\alpha} \left[
\exp \left\{ \Psi_{\rm log} \left( t_{n+1} \right) / \gamma \right\} - 1 \right]
\f}
Note that \f$V_{X_i}^\prime\left( {{t_0}} \right)\f$ is assumed to be initially given, which meets the following relation,
\f[
\sum\limits_{i = 1}^N M_i V_{X_i}^{\prime 2} \left( t_0 \right) = N{k_B}{T}
\f]
It should be stressed that, in the same way as in the NVE and Nose-Hoover LogMFD/PD, \f$F({\bf X}(t))\f$ can be evaluated at each MFD step (on-the-fly free energy reconstruction) in Velocity Scaling LogMFD/PD.
\par Examples
\section Examples Examples
\subsection Example-LoGMFD Example of LogMFD
The following input file tells plumed to restrain collective variables
to the fictitious dynamical variables in LogMFD/PD.
plumed.dat
\plumedfile
UNITS TIME=fs LENGTH=1.0 ENERGY=kcal/mol MASS=1.0 CHARGE=1.0
phi: TORSION ATOMS=5,7,9,15
psi: TORSION ATOMS=7,9,15,17
# LogMFD
LOGMFD ...
LABEL=logmfd
ARG=phi,psi
KAPPA=100.0,100.0
DELTA_T=0.5
INTERVAL=500
TEMP=300.0
FLOG=5.0
MFICT=5000000.0,5000000.0
VFICT=3.5e-4,3.5e-4
ALPHA=4.0
THERMOSTAT=NVE
VETA=0.0
META=20000.0
FICT_MAX=3.1,3.1
FICT_MIN=-3.1,-3.1
... LOGMFD
\endplumedfile
To submit this simulation with Gromacs, use the following command line
to execute a LogMFD run with Gromacs-MD.
Here TOPO/topol0.tpr is an input file
which contains atomic coordinates and Gromacs parameters.
\verbatim
gmx_mpi mdrun -s TOPO/topol0.tpr -plumed
\endverbatim
This command will output files named logmfd.out and replica.out.
The output file logmfd.out records free energy and all fictitious dynamical variables at every MFD step.
logmfd.out
\verbatim
# LogMFD
# CVs : phi psi
# Mass for CV particles : 5000000.000000000 5000000.000000000
# Mass for thermostat : 20000.000000000
# 1:iter_md, 2:Flog, 3:2*Ekin/gkb[K], 4:eta, 5:Veta,
# 6:phi_fict(t), 7:phi_vfict(t), 8:phi_force(t),
# 9:psi_fict(t), 10:psi_vfict(t), 11:psi_force(t),
1 4.99918574 308.24149708 0.00000000 0.00000000 -2.85605938 0.00035002 5.19074544 2.79216364 0.00035000 -0.53762989
2 4.99836196 308.26124159 0.00000000 0.00000000 -2.85588436 0.00035005 4.71247605 2.79233863 0.00035000 -0.00532474
3 4.99743572 308.28344595 0.00000000 0.00000000 -2.85570932 0.00035007 5.34358230 2.79251363 0.00035000 -0.05119816
...
\endverbatim
The output file replica.out records all collective variables at every MFD step.
replica.out
\verbatim
# Replica No. 0 of 1.
# 1:iter_md, 2:work, 3:weight,
# 4:phi(q)
# 5:psi(q)
1 -8.142952e-04 1.000000e+00 -2.80432694 2.78661234
2 -1.638105e-03 1.000000e+00 -2.80893462 2.79211039
3 -2.564398e-03 1.000000e+00 -2.80244854 2.79182665
...
\endverbatim
\subsection Example-LogPD Example of LogPD
Use the following command line to execute a LogPD run using two MD replicas (note that only Gromacs is currently available for LogPD).
Here TOPO/topol0.tpr and TOPO/topol1.tpr are input files
which contain atomic coordinates of each replica and Gromacs parameters.
\verbatim
mpirun -np 2 gmx_mpi mdrun -s TOPO/topol -plumed -multi 2
\endverbatim
This command will output files named logmfd.out, replica.out.0 and replica.out.1.
The output file logmfd.out records free energy and all fictitious dynamical variables at every MFD step.
logmfd.out
\verbatim
# LogPD, replica parallel of LogMFD
# number of replica : 2
# CVs : phi psi
# Mass for CV particles : 5000000.000000000 5000000.000000000
# Mass for thermostat : 20000.000000000
# 1:iter_md, 2:Flog, 3:2*Ekin/gkb[K], 4:eta, 5:Veta,
# 6:phi_fict(t), 7:phi_vfict(t), 8:phi_force(t),
# 9:psi_fict(t), 10:psi_vfict(t), 11:psi_force(t),
1 5.00224715 308.16814691 0.00000000 0.00000000 -0.95937173 0.00034994 -12.91277494 0.78923967 0.00035000 0.07353010
2 5.00476934 308.10774854 0.00000000 0.00000000 -0.95919679 0.00034989 -11.20093553 0.78941467 0.00034999 -3.21098229
3 5.00702463 308.05376594 0.00000000 0.00000000 -0.95902187 0.00034983 -10.81712171 0.78958965 0.00034998 -2.07196718
...
\endverbatim
The output file replica.out.0 records all collective variables of replica No.0 at every MFD step.
replica.out.0
\verbatim
# Replica No. 0 of 2.
# 1:iter_md, 2:work, 3:weight,
# 4:phi(q)
# 5:psi(q)
1 1.843110e-03 5.003389e-01 -1.10929125 0.83348865
2 3.466179e-03 5.010942e-01 -1.05020764 0.78731283
3 4.927870e-03 5.017619e-01 -1.04968867 0.79635198
...
\endverbatim
The output file replica.out.1 records all collective variables of replica No.1 at every MFD step.
replica.out.1
\verbatim
# Replica No. 1 of 2.
# 1:iter_md, 2:work, 3:weight,
# 4:phi(q)
# 5:psi(q)
1 2.651173e-03 4.996611e-01 -1.06802968 0.74605205
2 6.075530e-03 4.989058e-01 -1.09264741 0.72681448
3 9.129358e-03 4.982381e-01 -1.08517238 0.74084241
...
\endverbatim
*/
//+ENDPLUMEDOC
#include "bias/Bias.h"
#include "core/ActionRegister.h"
#include "core/Atoms.h"
#include "core/PlumedMain.h"
#include <iostream>
using namespace std;
using namespace PLMD;
using namespace bias;
namespace PLMD {
namespace logmfd {
/**
\brief class for LogMFD parameters, variables and subroutines.
*/
class LogMFD : public Bias {
bool firsttime; ///< flag that indicates first MFD step or not.
int interval; ///< input parameter, period of MD steps when fictitious dynamical variables are evolved.
double delta_t; ///< input parameter, one time step of MFD when fictitious dynamical variables are evolved.
string thermostat; ///< input parameter, type of thermostat for canonical dyanamics.
double kbt; ///< k_B*temperature
int TAMD; ///< input parameter, perform TAMD instead of LogMFD.
double alpha; ///< input parameter, alpha parameter for LogMFD.
double gamma; ///< input parameter, gamma parameter for LogMFD.
std::vector<double> kappa; ///< input parameter, strength of the harmonic restraining potential.
std::vector<double> fict_max; ///< input parameter, maximum of each fictitous dynamical variable.
std::vector<double> fict_min; ///< input parameter, minimum of each fictitous dynamical variable.
std::vector<double> fict; ///< current values of each fictitous dynamical variable.
std::vector<double> vfict; ///< current velocity of each fictitous dynamical variable.
std::vector<double> mfict; ///< mass of each fictitous dynamical variable.
double xeta; ///< current eta variable of thermostat.
double veta; ///< current velocity of eta variable of thermostat.
double meta; ///< mass of eta variable of thermostat.
double flog; ///< current free energy
double hlog; ///< value invariant
double phivs; ///< potential used in VS method
double work; ///< current works done by fictitious dynamical variables in this replica.
double weight; ///< current weight of this replica.
std::vector<double> ffict; ///< current force of each fictitous dynamical variable.
std::vector<double> fict_ave; ///< averaged values of each collective variable.
std::vector<Value*> fictValue; ///< pointers to fictitious dynamical variables
std::vector<Value*> vfictValue; ///< pointers to velocity of fictitious dynamical variables
public:
static void registerKeywords(Keywords& keys);
explicit LogMFD(const ActionOptions&);
void calculate();
void update();
void updateNVE();
void updateNVT();
void updateVS();
void calcMeanForce();
double calcEkin();
double calcFlog();
double calcClog();
private:
double sgn( double x ) {
return x>0.0 ? 1.0 : x<0.0 ? -1.0 : 0.0;
}
};
PLUMED_REGISTER_ACTION(LogMFD,"LOGMFD")
/**
\brief instruction of parameters for Plumed manual.
*/
void LogMFD::registerKeywords(Keywords& keys) {
Bias::registerKeywords(keys);
keys.use("ARG");
keys.add("compulsory","INTERVAL",
"Period of MD steps (\\f$N_m\\f$) to update fictitious dynamical variables." );
keys.add("compulsory","DELTA_T",
"Time step for the fictitious dynamical variables (MFD step)." );
keys.add("compulsory","THERMOSTAT",
"Type of thermostat for the fictitious dynamical variables. NVE, NVT, VS are available." );
keys.add("optional","TEMP",
"Temperature of the fictitious dynamical variables in LogMFD/PD thermostat. "
"If not provided or provided as 0, it will be taken from the temperature of the MD system." );
keys.add("optional","TAMD",
"When TAMD=1, TAMD/d-AFED calculations can be performed instead of LogMFD. Otherwise, the LogMFD protocol is switched on (default)." );
keys.add("optional","ALPHA",
"Alpha parameter for LogMFD. "
"If not provided or provided as 0, it will be taken as 1/gamma. "
"If gamma is also not provided, Alpha is set as 4, which is a sensible value when the unit of kcal/mol is used." );
keys.add("optional","GAMMA",
"Gamma parameter for LogMFD. "
"If not provided or provided as 0, it will be taken as 1/alpha. "
"If alpha is also not provided, Gamma is set as 0.25, which is a sensible value when the unit of kcal/mol is used." );
keys.add("compulsory","KAPPA",
"Spring constant of the harmonic restraining potential for the fictitious dynamical variables." );
keys.add("compulsory","FICT_MAX",
"Maximum values reachable for the fictitious dynamical variables. The variables will elastically bounce back at the boundary (mirror boundary)." );
keys.add("compulsory","FICT_MIN",
"Minimum values reachable for the fictitious dynamical variables. The variables will elastically bounce back at the boundary (mirror boundary)." );
keys.add("optional","FICT",
"The initial values of the fictitious dynamical variables. "
"If not provided, they are set equal to their corresponding CVs for the initial atomic configuration." );
keys.add("optional","VFICT",
"The initial velocities of the fictitious dynamical variables. "
"If not provided, they will be taken as 0." );
keys.add("optional","MFICT",
"Masses of each fictitious dynamical variable. "
"If not provided, they will be taken as 10000." );
keys.add("optional","XETA",
"The initial eta variable of the Nose-Hoover thermostat "
"for the fictitious dynamical variables. "
"If not provided, it will be taken as 0." );
keys.add("optional","VETA",
"The initial velocity of eta variable. "
"If not provided, it will be taken as 0." );
keys.add("optional","META",
"Mass of eta variable. "
"If not provided, it will be taken as \\f$N*kb*T*100*100\\f$." );
keys.add("compulsory","FLOG",
"The initial free energy value in the LogMFD/PD run."
"The origin of the free energy profile is adjusted by FLOG to "
"realize \\f$F({\\bf X}(t)) > 0\\f$ at any \\f${\\bf X}(t)\\f$, "
"resulting in enhanced barrier-crossing. "
"(The value of \\f$H_{\\rm log}\\f$ is automatically "
"set according to FLOG).");
keys.add("optional","WORK",
"The initial value of the work done by fictitious dynamical "
"variables in each replica. "
"If not provided, it will be taken as 0.");
componentsAreNotOptional(keys);
keys.addOutputComponent("_fict","default",
"For example, the fictitious collective variable for LogMFD is specified as "
"ARG=dist12 and LABEL=logmfd in LOGMFD section in Plumed input file, "
"the associated fictitious dynamical variable can be specified as "
"PRINT ARG=dist12,logmfd.dist12_fict FILE=COLVAR");
keys.addOutputComponent("_vfict","default",
"For example, the fictitious collective variable for LogMFD is specified as "
"ARG=dist12 and LABEL=logmfd in LOGMFD section in Plumed input file, the "
"velocity of the associated fictitious dynamical variable can be specified as "
"PRINT ARG=dist12,logmfd.dist12_vfict FILE=COLVAR");
}
/**
\brief constructor of LogMFD class
\details This constructor initializes all parameters and variables,
reads input file and set value of parameters and initial value of variables,
and writes messages as Plumed log.
*/
LogMFD::LogMFD( const ActionOptions& ao ):
PLUMED_BIAS_INIT(ao),
firsttime(true),
interval(10),
delta_t(1.0),
thermostat("NVE"),
kbt(-1.0),
TAMD(0),
alpha(0.0),
gamma(0.0),
kappa(getNumberOfArguments(),0.0),
fict_max(getNumberOfArguments(),0.0),
fict_min(getNumberOfArguments(),0.0),
fict (getNumberOfArguments(),0.0),
vfict(getNumberOfArguments(),0.0),
mfict(getNumberOfArguments(),10000.0),
xeta(0.0),
veta(0.0),
meta(0.0),
flog(0.0),
hlog(0.0),
phivs(0.0),
work(0.0),
weight(0.0),
ffict(getNumberOfArguments(),0.0),
fict_ave(getNumberOfArguments(),0.0),
fictValue(getNumberOfArguments(),NULL),
vfictValue(getNumberOfArguments(),NULL)
{
parse("INTERVAL",interval);
parse("DELTA_T",delta_t);
parse("THERMOSTAT",thermostat);
parse("TEMP",kbt); // read as temperature
parse("TAMD",TAMD);
parse("ALPHA",alpha);
parse("GAMMA",gamma);
parseVector("KAPPA",kappa);
parseVector("FICT_MAX",fict_max);
parseVector("FICT_MIN",fict_min);
parseVector("FICT",fict);
parseVector("VFICT",vfict);
parseVector("MFICT",mfict);
parse("XETA",xeta);
parse("VETA",veta);
parse("META",meta);
parse("FLOG",flog);
// read initial value of work for each replica of LogPD
if( multi_sim_comm.Get_size()>1 ) {
vector<double> vwork(multi_sim_comm.Get_size(),0.0);
parseVector("WORK",vwork);
// initial work of this replica
work = vwork[multi_sim_comm.Get_rank()];
}
else {
work = 0.0;
}
if( kbt>=0.0 ) {
kbt *= plumed.getAtoms().getKBoltzmann();
}
else {
kbt = plumed.getAtoms().getKbT();
}
if( meta == 0.0 ) {
const double nkt = getNumberOfArguments()*kbt;
meta = nkt*100.0*100.0;
}
if(alpha == 0.0 && gamma == 0.0) {
alpha = 4.0;
gamma = 1 / alpha;
}
else if(alpha != 0.0 && gamma == 0.0) {
gamma = 1 / alpha;
}
else if(alpha == 0.0 && gamma != 0.0) {
alpha = 1 / gamma;
}
checkRead();
// output messaages to Plumed's log file
if( multi_sim_comm.Get_size()>1 ) {
if( TAMD ) {
log.printf("TAMD-PD, replica parallel of TAMD, no logarithmic flattening.\n");
}
else {
log.printf("LogPD, replica parallel of LogMFD.\n");
}
log.printf("number of replica : %d.\n", multi_sim_comm.Get_size() );
}
else {
if( TAMD ) {
log.printf("TAMD, no logarithmic flattening.\n");
}
else {
log.printf("LogMFD, logarithmic flattening.\n");
}
}
log.printf(" with harmonic force constant ");
for(unsigned i=0; i<kappa.size(); i++) log.printf(" %f",kappa[i]);
log.printf("\n");
log.printf(" with interval of cv(ideal) update ");
log.printf(" %d", interval);
log.printf("\n");
log.printf(" with time step of cv(ideal) update ");
log.printf(" %f", delta_t);
log.printf("\n");
if( !TAMD ) {
log.printf(" with alpha, gamma ");
log.printf(" %f %f", alpha, gamma);
log.printf("\n");
}
log.printf(" with Thermostat for cv(ideal) ");
log.printf(" %s", thermostat.c_str());
log.printf("\n");
log.printf(" with initial free energy ");
log.printf(" %f", flog);
log.printf("\n");
log.printf(" with mass of cv(ideal)");
for(unsigned i=0; i<mfict.size(); i++) log.printf(" %f", mfict[i]);
log.printf("\n");
log.printf(" with initial value of cv(ideal)");
for(unsigned i=0; i<fict.size(); i++) log.printf(" %f", fict[i]);
log.printf("\n");
log.printf(" with initial velocity of cv(ideal)");
for(unsigned i=0; i<vfict.size(); i++) log.printf(" %f", vfict[i]);
log.printf("\n");
log.printf(" with maximum value of cv(ideal) ");
for(unsigned i=0; i<fict_max.size(); i++) log.printf(" %f",fict_max[i]);
log.printf("\n");
log.printf(" with minimum value of cv(ideal) ");
for(unsigned i=0; i<fict_min.size(); i++) log.printf(" %f",fict_min[i]);
log.printf("\n");
log.printf(" and kbt ");
log.printf(" %f",kbt);
log.printf("\n");
// setup Value* variables
for(unsigned i=0; i<getNumberOfArguments(); i++) {
std::string comp = getPntrToArgument(i)->getName()+"_fict";
addComponentWithDerivatives(comp);
if(getPntrToArgument(i)->isPeriodic()) {
std::string a,b;
getPntrToArgument(i)->getDomain(a,b);
componentIsPeriodic(comp,a,b);
}
else {
componentIsNotPeriodic(comp);
}
fictValue[i] = getPntrToComponent(comp);
comp = getPntrToArgument(i)->getName()+"_vfict";
addComponent(comp);
componentIsNotPeriodic(comp);
vfictValue[i] = getPntrToComponent(comp);
}
}
/**
\brief calculate forces for fictitious variables at every MD steps.
\details This function calculates initial values of fictitious variables
and write header messages to LogMFD log files at the first MFD step,
calculates restraining fources comes from difference between the fictitious variable
and collective variable at every MD steps.
*/
void LogMFD::calculate() {
if( firsttime ) {
firsttime = false;
// set initial values of fictitious variables if they were not specified.
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
if( fict[i] != 0.0 ) continue;
// use the collective variables as the initial of the fictitious variable.
fict[i] = getArgument(i);
// average values of fictitious variables by all replica.
if( multi_sim_comm.Get_size()>1 ) {
multi_sim_comm.Sum(fict[i]);
fict[i] /= multi_sim_comm.Get_size();
}
}
// initialize accumulation value to zero
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
fict_ave[i] = 0.0;
}
// calculate invariant for NVE
if(thermostat == "NVE") {
// kinetic energy
const double ekin = calcEkin();
// potential energy
const double pot = TAMD ? flog : sgn(flog)*gamma * std::log1p( alpha*fabs(flog) );
// invariant
hlog = pot + ekin;
}
else if(thermostat == "NVT") {
const double nkt = getNumberOfArguments()*kbt;
// kinetic energy
const double ekin = calcEkin();
// bath energy
const double ekin_bath = 0.5*veta*veta*meta + xeta*nkt;
// potential energy
const double pot = TAMD ? flog : sgn(flog)*gamma * std::log1p( alpha*fabs(flog) );
// invariant
hlog = pot + ekin + ekin_bath;
}
else if(thermostat == "VS") {
// initial velocities
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
vfict[i] = sqrt(kbt/mfict[i]);
}
// initial VS potential
phivs = TAMD ? flog : sgn(flog)* gamma*std::log1p( alpha*fabs(flog) );
// invariant
hlog = 0.0;
}
weight = 1.0; // for replica parallel
// open LogMFD's log file
if( multi_sim_comm.Get_rank()==0 && comm.Get_rank()==0 ) {
FILE *outlog = std::fopen("logmfd.out", "w");
// output messages to LogMFD's log file
if( multi_sim_comm.Get_size()>1 ) {
fprintf(outlog, "# LogPD, replica parallel of LogMFD\n");
fprintf(outlog, "# number of replica : %d\n", multi_sim_comm.Get_size() );
}
else {
fprintf(outlog, "# LogMFD\n");
}
fprintf(outlog, "# CVs :");
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
fprintf(outlog, " %s", getPntrToArgument(i)->getName().c_str() );
}
fprintf(outlog, "\n");
fprintf(outlog, "# Mass for CV particles :");
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
fprintf(outlog, "%18.9f", mfict[i]);
}
fprintf(outlog, "\n");
fprintf(outlog, "# Mass for thermostat :");
fprintf(outlog, "%18.9f", meta);
fprintf(outlog, "\n");
fprintf(outlog, "# 1:iter_md, 2:Flog, 3:2*Ekin/gkb[K], 4:eta, 5:Veta,\n");
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
fprintf(outlog, "# %u:%s_fict(t), %u:%s_vfict(t), %u:%s_force(t),\n",
6+i*3, getPntrToArgument(i)->getName().c_str(),
7+i*3, getPntrToArgument(i)->getName().c_str(),
8+i*3, getPntrToArgument(i)->getName().c_str() );
}
fclose(outlog);
}
if( comm.Get_rank()==0 ) {
// the number of replica is added to file name to distingwish replica.
FILE *outlog2 = fopen("replica.out", "w");
fprintf(outlog2, "# Replica No. %d of %d.\n",
multi_sim_comm.Get_rank(), multi_sim_comm.Get_size() );
fprintf(outlog2, "# 1:iter_md, 2:work, 3:weight,\n");
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
fprintf(outlog2, "# %u:%s(q)\n",
4+i, getPntrToArgument(i)->getName().c_str() );
}
fclose(outlog2);
}
// output messages to Plumed's log file
// log.printf("LOGMFD thermostat parameters Xeta Veta Meta");
// log.printf(" %f %f %f", xeta, veta, meta);
// log.printf("\n");
// log.printf("# 1:iter_md, 2:Flog, 3:2*Ekin/gkb[K], 4:eta, 5:Veta,");
// log.printf("# 6:X1(t), 7:V1(t), 8:F1(t), 9:X2(t), 10:V2(t), 11:F2(t), ...");
} // firsttime
// calculate force for fictitious variable
double ene=0.0;
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
// difference between fictitious variable and collective variable.
const double diff = difference(i,fict[i],getArgument(i));
// restraining force.
const double f = -kappa[i]*diff;
setOutputForce(i,f);
// restraining energy.
ene += 0.5*kappa[i]*diff*diff;
// accumulate force, later it will be averaged.
ffict[i] += -f;
// accumulate varience of collective variable, later it will be averaged.
fict_ave[i] += diff;
}
setBias(ene);
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
// correct fict so that it is inside [min:max].
fict[i] = fictValue[i]->bringBackInPbc(fict[i]);
fictValue[i]->set(fict[i]);
vfictValue[i]->set(vfict[i]);
}
} // calculate
/**
\brief update fictitious variables.
\details This function manages evolution of fictitious variables.
This function calculates mean force, updates fictitious variables by one MFD step,
bounces back variables, updates free energy, and record logs.
*/
void LogMFD::update() {
if(getStep() == 0 || getStep()%interval != 0 ) return;
// calc mean force for fictitious variables
calcMeanForce();
// update fictitious variables
if(thermostat == "NVE") {
updateNVE();
}
else if(thermostat == "NVT") {
updateNVT();
}
else if(thermostat == "VS") {
updateVS();
}
// bounce back variables if they are beyond their min and max.
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
if(fict[i] > fict_max[i]) {
fict[i] = fict_max[i] - (fict[i] - fict_max[i]);
vfict[i] *= -1.0;
}
if(fict[i] < fict_min[i]) {
fict[i] = fict_min[i] + (fict_min[i] - fict[i]);
vfict[i] *= -1.0;
}
}
// update free energy
flog = calcFlog();
// record log for fictitious variables
if( multi_sim_comm.Get_rank()==0 && comm.Get_rank()==0 ) {
FILE *outlog = std::fopen("logmfd.out", "a");
const double ekin = calcEkin();
const double temp = 2.0*ekin/getNumberOfArguments()/plumed.getAtoms().getKBoltzmann();
fprintf(outlog, "%*d", 8, (int)getStep()/interval);
fprintf(outlog, "%17.8f", flog);
fprintf(outlog, "%17.8f", temp);
fprintf(outlog, "%17.8f", xeta);
fprintf(outlog, "%17.8f", veta);
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
fprintf(outlog, "%17.8f", fict[i]);
fprintf(outlog, "%17.8f", vfict[i]);
fprintf(outlog, "%17.8f", ffict[i]);
}
fprintf(outlog," \n");
fclose(outlog);
}
// record log for collective variables
if( comm.Get_rank()==0 ) {
// the number of replica is added to file name to distingwish replica.
FILE *outlog2 = fopen("replica.out", "a");
fprintf(outlog2, "%*d", 8, (int)getStep()/interval);
fprintf(outlog2, "%16.6e ", work);
fprintf(outlog2, "%16.6e ", weight);
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
fprintf(outlog2, "%17.8f", fict_ave[i]);
}
fprintf(outlog2," \n");
fclose(outlog2);
}
// reset mean force
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
ffict[i] = 0.0;
fict_ave[i] = 0.0;
}
} // update
/**
\brief update fictitious variables by NVE mechanics.
\details This function updates ficitious variables by one NVE-MFD step using mean forces
and flattening coefficient and free energy.
*/
void LogMFD::updateNVE() {
const double dt = delta_t;
// get latest free energy and flattening coefficient
flog = calcFlog();
const double clog = calcClog();
// update all ficitious variables by one MFD step
for( unsigned i=0; i<getNumberOfArguments(); ++i ) {
// update velocity (full step)
vfict[i]+=clog*ffict[i]*dt/mfict[i];
// update position (full step)
fict[i]+=vfict[i]*dt;
}
} // updateNVE
/**
\brief update fictitious variables by NVT mechanics.
\details This function updates ficitious variables by one NVT-MFD step using mean forces
and flattening coefficient and free energy.
*/
void LogMFD::updateNVT() {
const double dt = delta_t;
const double nkt = getNumberOfArguments()*kbt;
// backup vfict
std::vector<double> vfict_backup(getNumberOfArguments());
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
vfict_backup[i] = vfict[i];
}
const int niter=5;
for(unsigned j=0; j<niter; ++j) {
// get latest free energy and flattening coefficient
flog = calcFlog();
const double clog = calcClog();
// restore vfict from vfict_backup
for(unsigned l=0; l<getNumberOfArguments(); ++l) {
vfict[l] = vfict_backup[l];
}
// evolve vfict from vfict_backup by dt/2
for(unsigned m=0; m<getNumberOfArguments(); ++m) {
vfict[m] *= exp(-0.25*dt*veta);
vfict[m] += 0.5*dt*clog*ffict[m]/mfict[m];
vfict[m] *= exp(-0.25*dt*veta);
}
}
// get latest free energy and flattening coefficient
flog = calcFlog();
const double clog = calcClog();
// evolve vfict by dt/2, and evolve fict by dt
for(unsigned i=0; i<getNumberOfArguments(); ++i) {
vfict[i] *= exp(-0.25*dt*veta);
vfict[i] += 0.5*dt*clog*ffict[i]/mfict[i];
vfict[i] *= exp(-0.25*dt*veta);
fict[i] += dt*vfict[i];
}
// evolve xeta and veta by dt
xeta += 0.5*dt*veta;