(Image from https://github.com/czming/RONELD-Lane-Detection/tree/main/example/00000.jpg)
Input shape: (1, 288, 800, 3)
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 ultra-fast-lane-detection.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 ultra-fast-lane-detection.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 ultra-fast-lane-detection.py --video VIDEO_PATH
By adding the --arch
option, you can select the model architecture from culane
and tusimple
.
Pytorch
ONNX opset = 11