(Image from https://github.com/sanghyun-son/EDSR-PyTorch/blob/master/test/0853x4.png)
Ailia input shape : (1, 3, IMAGE_HEIGHT, IMAGE_WIDTH)
Ailia output shape : (1, 3, IMAGE_HEIGHT * scale, IMAGE_WIDTH * scale)
default : scale=2
Automatically downloads the onnx and prototxt files when running. It is necessary to be connected to the Internet while downloading.
For the sample image with twice the resolution,
$ python3 rcan-it.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 rcan-it.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
If you want to specify the scale for the resolution, put the scale after the --scale
option.
Choose the scale in [2, 3, 4].
$ python3 rcan-it.py --scale SCALE
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 rcan-it.py --video VIDEO_PATH
Revisiting RCAN: Improved Training for Image Super-Resolution
Pytorch 1.11.0
ONNX opset = 12