You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thanks for your error report and we appreciate it a lot.
Checklist
I have searched related issues but cannot get the expected help.
The bug has not been fixed in the latest version.
Describe the bug
A clear and concise description of what the bug is.
An error when I launch train.py
Reproduction
What command or script did you run?
a batch file containing :
call conda activate solov2
cd C:\Users\MASTER\Desktop\SOLO-master\SOLO-master
set PYTHONPATH=C:\Users\MASTER\Desktop\SOLO-master;%PYTHONPATH%
python tools/train.py configs/solov2/solov2_light_448_r18_fpn_8gpu_3x.py
pause
A placeholder for the command.
Did you make any modifications on the code or config? Did you understand what you have modified?
yes I added a my_dataset.py in mmdet/datasets with the content :
from .coco import CocoDataset
from .registry import DATASETS
@DATASETS.register_module
class MyDataset(CocoDataset):
CLASSES = ['null', 'points']
and I have change the configs/solov2/solov2_light_448_r18_fpn_8gpu_3x.py file to :
I have added at root directory a folder "datasets" with a folder of images in it and a trainval.json file containing the coco annotations
my polygons instances are of category "points"
5. What dataset did you use?
Environment
Please run python tools/collect_env.py to collect necessary environment infomation and paste it here.
I have the error :
Traceback (most recent call last):
File "tools/collect_env.py", line 12, in
from mmdet.ops import get_compiler_version, get_compiling_cuda_version
ModuleNotFoundError: No module named 'mmdet.ops'
when I run python tools/collect_env.py
You may add addition that may be helpful for locating the problem, such as
Other environment variables that may be related (such as $PATH, $LD_LIBRARY_PATH, $PYTHONPATH, etc.)
Error traceback
If applicable, paste the error trackback here.
(solov2) C:\Users\MASTER\Desktop\SOLO-master\SOLO-master>python tools/train.py configs/solov2/solov2_light_448_r18_fpn_8gpu_3x.py
Traceback (most recent call last):
File "tools/train.py", line 9, in <module>
from mmcv import Config
ImportError: cannot import name 'Config' from 'mmcv' (C:\ProgramData\Anaconda3\envs\solov2\lib\site-packages\mmcv\__init__.py)
Bug fix
If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
The text was updated successfully, but these errors were encountered:
Thanks for your error report and we appreciate it a lot.
Checklist
Describe the bug
A clear and concise description of what the bug is.
An error when I launch train.py
Reproduction
a batch file containing :
call conda activate solov2
cd C:\Users\MASTER\Desktop\SOLO-master\SOLO-master
set PYTHONPATH=C:\Users\MASTER\Desktop\SOLO-master;%PYTHONPATH%
python tools/train.py configs/solov2/solov2_light_448_r18_fpn_8gpu_3x.py
pause
yes I added a my_dataset.py in mmdet/datasets with the content :
from .coco import CocoDataset
from .registry import DATASETS
@DATASETS.register_module
class MyDataset(CocoDataset):
CLASSES = ['null', 'points']
and I have change the configs/solov2/solov2_light_448_r18_fpn_8gpu_3x.py file to :
model settings
model = dict(
type='SOLOv2',
pretrained='torchvision://resnet18',
backbone=dict(
type='ResNet',
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3), # C2, C3, C4, C5
frozen_stages=1,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[64, 128, 256, 512],
out_channels=256,
start_level=0,
num_outs=5),
bbox_head=dict(
type='SOLOv2Head',
num_classes=1,
in_channels=256,
stacked_convs=2,
seg_feat_channels=256,
strides=[8, 8, 16, 32, 32],
scale_ranges=((1, 56), (28, 112), (56, 224), (112, 448), (224, 896)),
sigma=0.2,
num_grids=[40, 36, 24, 16, 12],
ins_out_channels=128,
loss_ins=dict(
type='DiceLoss',
use_sigmoid=True,
loss_weight=3.0),
loss_cate=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0)),
mask_feat_head=dict(
type='MaskFeatHead',
in_channels=256,
out_channels=128,
start_level=0,
end_level=3,
num_classes=128,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)),
)
training and testing settings
train_cfg = dict()
test_cfg = dict(
nms_pre=500,
score_thr=0.1,
mask_thr=0.5,
update_thr=0.05,
kernel='gaussian', # gaussian/linear
sigma=2.0,
max_per_img=100)
dataset settings
dataset_type = 'MyDataset'
data_root = 'datasets/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize',
img_scale=[(768, 512), (768, 480), (768, 448),
(768, 416), (768, 384), (768, 352)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(768, 448),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'trainval.json',
img_prefix=data_root + 'trainval/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'trainval.json',
img_prefix=data_root + 'trainval/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'trainval.json',
img_prefix=data_root + 'trainval/',
pipeline=test_pipeline))
optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.01,
step=[27, 33])
checkpoint_config = dict(interval=1)
yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
yapf:enable
runtime settings
total_epochs = 36
device_ids = range(8)
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/solov2_light_release_r18_fpn_8gpu_3x'
load_from = None
resume_from = None
workflow = [('train', 1)]
I have added at root directory a folder "datasets" with a folder of images in it and a trainval.json file containing the coco annotations
my polygons instances are of category "points"
5. What dataset did you use?
Environment
python tools/collect_env.py
to collect necessary environment infomation and paste it here.I have the error :
Traceback (most recent call last):
File "tools/collect_env.py", line 12, in
from mmdet.ops import get_compiler_version, get_compiling_cuda_version
ModuleNotFoundError: No module named 'mmdet.ops'
when I run
python tools/collect_env.py
conda create --name solov2 python=3.7 -y
conda activate solov2
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forgey
pip install mmdet mmcv==2.0.0
$PATH
,$LD_LIBRARY_PATH
,$PYTHONPATH
, etc.)Error traceback
If applicable, paste the error trackback here.
Bug fix
If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
The text was updated successfully, but these errors were encountered: