forked from awnumar/memguard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memguard.go
875 lines (698 loc) · 22.4 KB
/
memguard.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
package memguard
import (
"bytes"
"crypto/subtle"
"os"
"os/signal"
"syscall"
"unsafe"
"github.com/awnumar/memguard/memcall"
)
/*
NewImmutable creates a new, immutable LockedBuffer of a specified size.
The mutability can later be toggled with the MakeImmutable and MakeMutable methods.
If the given length is less than one, the call will return an ErrInvalidLength.
*/
func NewImmutable(size int) (*LockedBuffer, error) {
return newContainer(size, false)
}
/*
NewMutable creates a new, mutable LockedBuffer of a specified length.
The mutability can later be toggled with the MakeImmutable and MakeMutable methods.
If the given length is less than one, the call will return an ErrInvalidLength.
*/
func NewMutable(size int) (*LockedBuffer, error) {
return newContainer(size, true)
}
/*
NewImmutableFromBytes is identical to NewImmutable but for the fact that the created LockedBuffer is of the same length and has the same contents as a given slice. The slice is wiped after the bytes have been copied over.
If the size of the slice is zero, the call will return an ErrInvalidLength.
*/
func NewImmutableFromBytes(buf []byte) (*LockedBuffer, error) {
// Create a new LockedBuffer.
b, err := NewMutableFromBytes(buf)
if err != nil {
return nil, err
}
// Mark as immutable.
b.MakeImmutable()
// Return a pointer to the LockedBuffer.
return b, nil
}
/*
NewMutableFromBytes is identical to NewMutable but for the fact that the created LockedBuffer is of the same length and has the same contents as a given slice. The slice is wiped after the bytes have been copied over.
If the size of the slice is zero, the call will return an ErrInvalidLength.
*/
func NewMutableFromBytes(buf []byte) (*LockedBuffer, error) {
// Create a new LockedBuffer.
b, err := newContainer(len(buf), true)
if err != nil {
return nil, err
}
// Copy the bytes from buf, wiping afterwards.
b.Move(buf)
// Return a pointer to the LockedBuffer.
return b, nil
}
/*
NewImmutableRandom is identical to NewImmutable but for the fact that the created LockedBuffer is filled with cryptographically-secure pseudo-random bytes instead of zeroes. Therefore a LockedBuffer created with NewImmutableRandom can safely be used as an encryption key.
*/
func NewImmutableRandom(size int) (*LockedBuffer, error) {
// Create a new LockedBuffer for the key.
b, err := NewMutableRandom(size)
if err != nil {
return nil, err
}
// Mark as immutable if specified.
b.MakeImmutable()
// Return the LockedBuffer.
return b, nil
}
/*
NewMutableRandom is identical to NewMutable but for the fact that the created LockedBuffer is filled with cryptographically-secure pseudo-random bytes instead of zeroes. Therefore a LockedBuffer created with NewMutableRandom can safely be used as an encryption key.
*/
func NewMutableRandom(size int) (*LockedBuffer, error) {
// Create a new LockedBuffer for the key.
b, err := newContainer(size, true)
if err != nil {
return nil, err
}
// Fill it with random data.
fillRandBytes(b.buffer)
// Return the LockedBuffer.
return b, nil
}
/*
Buffer returns a slice that references the secure, protected portion of memory.
If the LockedBuffer that you call Buffer on has been destroyed, the returned slice will be nil (it will have a length and capacity of zero).
If a function that you're using requires an array, you can cast the buffer to an array and then pass around a pointer:
// Make sure the size of the array matches the size of the buffer.
// In this case that size is 16. This is *very* important.
keyArrayPtr := (*[16]byte)(unsafe.Pointer(&b.Buffer()[0]))
Make sure that you do not dereference the pointer and pass around the resulting value, as this will leave copies all over the place.
*/
func (b *container) Buffer() []byte {
return b.buffer
}
/*
Uint8 returns a slice (of type []uint8) that references the secure, protected portion of memory.
Uint8 is practically identical to Buffer, but it has been added for completeness' sake. Buffer will usually be the faster and easier option.
*/
func (b *container) Uint8() ([]uint8, error) {
// Attain the mutex lock.
b.Lock()
defer b.Unlock()
// Check to see if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Return the slice.
return []uint8(b.buffer), nil
}
/*
Uint16 returns a slice (of type []uint16) that references the secure, protected portion of memory.
The LockedBuffer must be a multiple of 2 bytes in length, or else an error will be returned.
*/
func (b *container) Uint16() ([]uint16, error) {
// Attain the mutex lock.
b.Lock()
defer b.Unlock()
// Check to see if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Check to see if it's an appropriate length.
if len(b.buffer)%2 != 0 {
return nil, ErrInvalidConversion
}
// Perform the conversion.
var sl = struct {
addr uintptr
len int
cap int
}{uintptr(unsafe.Pointer(&b.buffer[0])), b.Size() / 2, b.Size() / 2}
// Return the new slice.
return *(*[]uint16)(unsafe.Pointer(&sl)), nil
}
/*
Uint32 returns a slice (of type []uint32) that references the secure, protected portion of memory.
The LockedBuffer must be a multiple of 4 bytes in length, or else an error will be returned.
*/
func (b *container) Uint32() ([]uint32, error) {
// Attain the mutex lock.
b.Lock()
defer b.Unlock()
// Check to see if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Check to see if it's an appropriate length.
if len(b.buffer)%4 != 0 {
return nil, ErrInvalidConversion
}
// Perform the conversion.
var sl = struct {
addr uintptr
len int
cap int
}{uintptr(unsafe.Pointer(&b.buffer[0])), b.Size() / 4, b.Size() / 4}
// Return the new slice.
return *(*[]uint32)(unsafe.Pointer(&sl)), nil
}
/*
Uint64 returns a slice (of type []uint64) that references the secure, protected portion of memory.
The LockedBuffer must be a multiple of 8 bytes in length, or else an error will be returned.
*/
func (b *container) Uint64() ([]uint64, error) {
// Attain the mutex lock.
b.Lock()
defer b.Unlock()
// Check to see if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Check to see if it's an appropriate length.
if len(b.buffer)%8 != 0 {
return nil, ErrInvalidConversion
}
// Perform the conversion.
var sl = struct {
addr uintptr
len int
cap int
}{uintptr(unsafe.Pointer(&b.buffer[0])), b.Size() / 8, b.Size() / 8}
// Return the new slice.
return *(*[]uint64)(unsafe.Pointer(&sl)), nil
}
/*
Int8 returns a slice (of type []int8) that references the secure, protected portion of memory.
*/
func (b *container) Int8() ([]int8, error) {
// Attain the mutex lock.
b.Lock()
defer b.Unlock()
// Check to see if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Perform the conversion.
var sl = struct {
addr uintptr
len int
cap int
}{uintptr(unsafe.Pointer(&b.buffer[0])), b.Size(), b.Size()}
// Return the new slice.
return *(*[]int8)(unsafe.Pointer(&sl)), nil
}
/*
Int16 returns a slice (of type []int16) that references the secure, protected portion of memory.
The LockedBuffer must be a multiple of 2 bytes in length, or else an error will be returned.
*/
func (b *container) Int16() ([]int16, error) {
// Attain the mutex lock.
b.Lock()
defer b.Unlock()
// Check to see if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Check to see if it's an appropriate length.
if len(b.buffer)%2 != 0 {
return nil, ErrInvalidConversion
}
// Perform the conversion.
var sl = struct {
addr uintptr
len int
cap int
}{uintptr(unsafe.Pointer(&b.buffer[0])), b.Size() / 2, b.Size() / 2}
// Return the new slice.
return *(*[]int16)(unsafe.Pointer(&sl)), nil
}
/*
Int32 returns a slice (of type []int32) that references the secure, protected portion of memory.
The LockedBuffer must be a multiple of 4 bytes in length, or else an error will be returned.
*/
func (b *container) Int32() ([]int32, error) {
// Attain the mutex lock.
b.Lock()
defer b.Unlock()
// Check to see if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Check to see if it's an appropriate length.
if len(b.buffer)%4 != 0 {
return nil, ErrInvalidConversion
}
// Perform the conversion.
var sl = struct {
addr uintptr
len int
cap int
}{uintptr(unsafe.Pointer(&b.buffer[0])), b.Size() / 4, b.Size() / 4}
// Return the new slice.
return *(*[]int32)(unsafe.Pointer(&sl)), nil
}
/*
Int64 returns a slice (of type []int64) that references the secure, protected portion of memory.
The LockedBuffer must be a multiple of 8 bytes in length, or else an error will be returned.
*/
func (b *container) Int64() ([]int64, error) {
// Attain the mutex lock.
b.Lock()
defer b.Unlock()
// Check to see if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Check to see if it's an appropriate length.
if len(b.buffer)%8 != 0 {
return nil, ErrInvalidConversion
}
// Perform the conversion.
var sl = struct {
addr uintptr
len int
cap int
}{uintptr(unsafe.Pointer(&b.buffer[0])), b.Size() / 8, b.Size() / 8}
// Return the new slice.
return *(*[]int64)(unsafe.Pointer(&sl)), nil
}
/*
IsMutable returns a boolean value indicating if a LockedBuffer is marked read-only.
*/
func (b *container) IsMutable() bool {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
return b.mutable
}
/*
IsDestroyed returns a boolean value indicating if a LockedBuffer has been destroyed.
*/
func (b *container) IsDestroyed() bool {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Return the appropriate value.
return len(b.buffer) == 0
}
/*
EqualBytes compares a LockedBuffer to a byte slice in constant time.
*/
func (b *container) EqualBytes(buf []byte) (bool, error) {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Check if it's destroyed.
if len(b.buffer) == 0 {
return false, ErrDestroyed
}
// Do a time-constant comparison.
if subtle.ConstantTimeCompare(b.buffer, buf) == 1 {
// They're equal.
return true, nil
}
// They're not equal.
return false, nil
}
/*
MakeImmutable asks the kernel to mark the LockedBuffer's memory as immutable. Any subsequent attempts to modify this memory will result in the process crashing with a SIGSEGV memory violation.
To make the memory mutable again, MakeMutable is called.
*/
func (b *container) MakeImmutable() error {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Check if it's destroyed.
if len(b.buffer) == 0 {
return ErrDestroyed
}
if b.mutable {
// Mark the memory as mutable.
memcall.Protect(getAllMemory(b)[pageSize:pageSize+roundToPageSize(len(b.buffer)+32)], true, false)
// Tell everyone about the change we made.
b.mutable = false
}
// Everything went well.
return nil
}
/*
MakeMutable asks the kernel to mark the LockedBuffer's memory as mutable.
To make the memory immutable again, MakeImmutable is called.
*/
func (b *container) MakeMutable() error {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Check if it's destroyed.
if len(b.buffer) == 0 {
return ErrDestroyed
}
if !b.mutable {
// Mark the memory as mutable.
memcall.Protect(getAllMemory(b)[pageSize:pageSize+roundToPageSize(len(b.buffer)+32)], true, true)
// Tell everyone about the change we made.
b.mutable = true
}
// Everything went well.
return nil
}
/*
Copy copies bytes from a byte slice into a LockedBuffer in constant-time. Just like Golang's built-in copy function, Copy only copies up to the smallest of the two buffers.
It does not wipe the original slice so using Copy is less secure than using Move. Therefore Move should be favoured unless you have a good reason.
You should aim to call WipeBytes on the original slice as soon as possible.
If the LockedBuffer is marked as read-only, the call will fail and return an ErrReadOnly.
*/
func (b *container) Copy(buf []byte) error {
// Just call CopyAt with a zero offset.
return b.CopyAt(buf, 0)
}
/*
CopyAt is identical to Copy but it copies into the LockedBuffer at a specified offset.
*/
func (b *container) CopyAt(buf []byte, offset int) error {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Check if it's destroyed.
if len(b.buffer) == 0 {
return ErrDestroyed
}
// Check if it's immutable.
if !b.mutable {
return ErrImmutable
}
// Do a time-constant copying of the bytes, copying only up to the length of the buffer.
if len(b.buffer[offset:]) > len(buf) {
subtle.ConstantTimeCopy(1, b.buffer[offset:offset+len(buf)], buf)
} else if len(b.buffer[offset:]) < len(buf) {
subtle.ConstantTimeCopy(1, b.buffer[offset:], buf[:len(b.buffer[offset:])])
} else {
subtle.ConstantTimeCopy(1, b.buffer[offset:], buf)
}
return nil
}
/*
Move moves bytes from a byte slice into a LockedBuffer in constant-time. Just like Golang's built-in copy function, Move only moves up to the smallest of the two buffers.
Unlike Copy, Move wipes the entire original slice after copying the appropriate number of bytes over, and so it should be favoured unless you have a good reason.
If the LockedBuffer is marked as read-only, the call will fail and return an ErrReadOnly.
*/
func (b *container) Move(buf []byte) error {
// Just call MoveAt with a zero offset.
return b.MoveAt(buf, 0)
}
/*
MoveAt is identical to Move but it copies into the LockedBuffer at a specified offset.
*/
func (b *container) MoveAt(buf []byte, offset int) error {
// Copy buf into the LockedBuffer.
if err := b.CopyAt(buf, offset); err != nil {
return err
}
// Wipe the old bytes.
wipeBytes(buf)
// Everything went well.
return nil
}
/*
FillRandomBytes fills a LockedBuffer with cryptographically-secure pseudo-random bytes.
*/
func (b *container) FillRandomBytes() error {
// Just call FillRandomBytesAt.
return b.FillRandomBytesAt(0, b.Size())
}
/*
FillRandomBytesAt fills a LockedBuffer with cryptographically-secure pseudo-random bytes, starting at an offset and ending after a given number of bytes.
*/
func (b *container) FillRandomBytesAt(offset, length int) error {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Check if it's destroyed.
if len(b.buffer) == 0 {
return ErrDestroyed
}
// Check if it's immutable.
if !b.mutable {
return ErrImmutable
}
// Fill with random bytes.
fillRandBytes(b.buffer[offset : offset+length])
// Everything went well.
return nil
}
/*
Destroy verifies that no buffer underflows occurred and then wipes, unlocks, and frees all related memory. If a buffer underflow is detected, the process panics.
This function must be called on all LockedBuffers before exiting. DestroyAll is designed for this purpose, as is CatchInterrupt and SafeExit. We recommend using all of them together.
If the LockedBuffer has already been destroyed then the call makes no changes.
*/
func (b *container) Destroy() {
// Attain a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Return if it's already destroyed.
if len(b.buffer) == 0 {
return
}
// Remove this one from global slice.
allLockedBuffersMutex.Lock()
for i, v := range allLockedBuffers {
if v == b {
allLockedBuffers = append(allLockedBuffers[:i], allLockedBuffers[i+1:]...)
break
}
}
allLockedBuffersMutex.Unlock()
// Get all of the memory related to this LockedBuffer.
memory := getAllMemory(b)
// Get the total size of all the pages between the guards.
roundedLength := len(memory) - (pageSize * 2)
// Verify the canary.
if !bytes.Equal(memory[pageSize+roundedLength-len(b.buffer)-32:pageSize+roundedLength-len(b.buffer)], canary) {
panic("memguard.Destroy(): buffer overflow detected")
}
// Make all of the memory readable and writable.
memcall.Protect(memory, true, true)
// Wipe the pages that hold our data.
wipeBytes(memory[pageSize : pageSize+roundedLength])
// Unlock the pages that hold our data.
memcall.Unlock(memory[pageSize : pageSize+roundedLength])
// Free all related memory.
memcall.Free(memory)
// Set the metadata appropriately.
b.mutable = false
// Set the buffer to nil.
b.buffer = nil
}
/*
Size returns an integer representing the total length, in bytes, of a LockedBuffer.
If this size is zero, it is safe to assume that the LockedBuffer has been destroyed.
*/
func (b *container) Size() int {
return len(b.buffer)
}
/*
Wipe wipes a LockedBuffer's contents by overwriting the buffer with zeroes.
*/
func (b *container) Wipe() error {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Check if it's destroyed.
if len(b.buffer) == 0 {
return ErrDestroyed
}
// Check if it's immutable.
if !b.mutable {
return ErrImmutable
}
// Wipe the buffer.
wipeBytes(b.buffer)
// Everything went well.
return nil
}
/*
Concatenate takes two LockedBuffers and concatenates them.
If one of the given LockedBuffers is immutable, the resulting LockedBuffer will also be immutable. The original LockedBuffers are not destroyed.
*/
func Concatenate(a, b *LockedBuffer) (*LockedBuffer, error) {
// Get a mutex lock on the LockedBuffers.
a.Lock()
b.Lock()
defer a.Unlock()
defer b.Unlock()
// Check if either are destroyed.
if len(a.buffer) == 0 || len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Create a new LockedBuffer to hold the concatenated value.
c, _ := NewMutable(len(a.buffer) + len(b.buffer))
// Copy the values across.
c.Copy(a.buffer)
c.CopyAt(b.buffer, len(a.buffer))
// Set permissions accordingly.
if !a.mutable || !b.mutable {
c.MakeImmutable()
}
// Return the resulting LockedBuffer.
return c, nil
}
/*
Duplicate takes a LockedBuffer and creates a new one with the same contents and mutability state as the original.
*/
func Duplicate(b *LockedBuffer) (*LockedBuffer, error) {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Check if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Create new LockedBuffer.
newBuf, _ := NewMutable(b.Size())
// Copy bytes into it.
newBuf.Copy(b.buffer)
// Set permissions accordingly.
if !b.mutable {
newBuf.MakeImmutable()
}
// Return duplicated.
return newBuf, nil
}
/*
Equal compares the contents of two LockedBuffers in constant time.
*/
func Equal(a, b *LockedBuffer) (bool, error) {
// Get a mutex lock on the LockedBuffers.
a.Lock()
b.Lock()
defer a.Unlock()
defer b.Unlock()
// Check if either are destroyed.
if len(a.buffer) == 0 || len(b.buffer) == 0 {
return false, ErrDestroyed
}
// Do a time-constant comparison on the two buffers.
if subtle.ConstantTimeCompare(a.buffer, b.buffer) == 1 {
// They're equal.
return true, nil
}
// They're not equal.
return false, nil
}
/*
Split takes a LockedBuffer, splits it at a specified offset, and then returns the two newly created LockedBuffers. The mutability state of the original is preserved in the new LockedBuffers, and the original LockedBuffer is not destroyed.
*/
func Split(b *LockedBuffer, offset int) (*LockedBuffer, *LockedBuffer, error) {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Check if it's destroyed.
if len(b.buffer) == 0 {
return nil, nil, ErrDestroyed
}
// Create two new LockedBuffers.
firstBuf, err := NewMutable(len(b.buffer[:offset]))
if err != nil {
return nil, nil, err
}
secondBuf, err := NewMutable(len(b.buffer[offset:]))
if err != nil {
firstBuf.Destroy()
return nil, nil, err
}
// Copy the values into them.
firstBuf.Copy(b.buffer[:offset])
secondBuf.Copy(b.buffer[offset:])
// Copy over permissions.
if !b.mutable {
firstBuf.MakeImmutable()
secondBuf.MakeImmutable()
}
// Return the new LockedBuffers.
return firstBuf, secondBuf, nil
}
/*
Trim shortens a LockedBuffer according to the given specifications. The mutability state of the original is preserved in the new LockedBuffer, and the original LockedBuffer is not destroyed.
Trim takes an offset and a size as arguments. The resulting LockedBuffer starts at index [offset] and ends at index [offset+size].
*/
func Trim(b *LockedBuffer, offset, size int) (*LockedBuffer, error) {
// Get a mutex lock on this LockedBuffer.
b.Lock()
defer b.Unlock()
// Check if it's destroyed.
if len(b.buffer) == 0 {
return nil, ErrDestroyed
}
// Create new LockedBuffer and copy over the old.
newBuf, err := NewMutable(size)
if err != nil {
return nil, err
}
newBuf.Copy(b.buffer[offset : offset+size])
// Copy over permissions.
if !b.mutable {
newBuf.MakeImmutable()
}
// Return the new LockedBuffer.
return newBuf, nil
}
/*
WipeBytes zeroes out a given byte slice. It is recommeded that you call WipeBytes on slices after utilizing the Copy or CopyAt methods.
Due to the nature of memory allocated by the Go runtime, WipeBytes cannot guarantee that the data does not exist elsewhere in memory. Therefore, your program should aim to (when possible) store sensitive data only in LockedBuffers.
*/
func WipeBytes(b []byte) {
wipeBytes(b)
}
/*
DestroyAll calls Destroy on all LockedBuffers that have not already been destroyed.
CatchInterrupt and SafeExit both call DestroyAll before exiting.
*/
func DestroyAll() {
// Get a Mutex lock on allLockedBuffers, and get a copy.
allLockedBuffersMutex.Lock()
containers := make([]*container, len(allLockedBuffers))
copy(containers, allLockedBuffers)
allLockedBuffersMutex.Unlock()
for _, b := range containers {
b.Destroy()
}
}
/*
CatchInterrupt starts a goroutine that monitors for interrupt signals. It accepts a function of type func() and executes that before calling SafeExit(0).
If CatchInterrupt is called multiple times, only the first call is executed and all subsequent calls are ignored.
*/
func CatchInterrupt(f func()) {
// Only do this if it hasn't been done before.
catchInterruptOnce.Do(func() {
// Create a channel to listen on.
c := make(chan os.Signal, 2)
// Notify the channel if we receive a signal.
signal.Notify(c, os.Interrupt, syscall.SIGTERM)
// Start a goroutine to listen on the channel.
go func() {
<-c // Wait for signal.
f() // Execute user function.
SafeExit(0) // Exit securely.
}()
})
}
/*
SafeExit exits the program with a specified exit-code, but calls DestroyAll first.
*/
func SafeExit(c int) {
// Cleanup protected memory.
DestroyAll()
// Exit with a specified exit-code.
os.Exit(c)
}
/*
DisableUnixCoreDumps disables core-dumps.
Since core-dumps are only relevant on Unix systems, if DisableUnixCoreDumps is called on any other system it will do nothing and return immediately.
This function is precautonary as core-dumps are usually disabled by default on most systems.
*/
func DisableUnixCoreDumps() {
memcall.DisableCoreDumps()
}