We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,我尝试按照论文中的描述,调整模型的参数值: 对应到代码中这一部分:
# Total lossA self.loss = (features_loss + self.lambda_ * structure_loss) + 0.1 * self.XZ_loss + 5 * self.C_loss + 1 *self.dense_loss # self.loss = features_loss + self.lambda_ * structure_loss + 10 * self.C_loss + self.dense_loss # without pd 0.678 # self.loss = features_loss + self.lambda_ * structure_loss + 10 * self.C_loss + 100 * self.XZ_loss # without ss 0.64 # self.loss = features_loss + self.lambda_ * structure_loss + 100 * self.XZ_loss + self.dense_loss # without clustering loss return self.loss, self.H, self.C, self.pred, self.dense_loss, self.z, features_loss, structure_loss#, self.C_loss, self.XZ_loss
最终在Cora数据集上得到如下结果:
Epoch--995: time: 501.838: acc: 0.67872969 nmi: 0.51988349 f_score: 0.60493104 ari: 0.45633046 Epoch--996: time: 502.479: acc: 0.67909897 nmi: 0.51989684 f_score: 0.60486178 ari: 0.45696338 Epoch--997: time: 503.102: acc: 0.67836041 nmi: 0.51759465 f_score: 0.60393833 ari: 0.45571426 Epoch--998: time: 503.696: acc: 0.67651403 nmi: 0.51489665 f_score: 0.60190142 ari: 0.45244131 Epoch--999: time: 504.392: acc: 0.67762186 nmi: 0.51728817 f_score: 0.60408646 ari: 0.45316671
而预期的准确率能达到 0.76。请问我是否还应该修改代码的其他部分?另外如果可以的话,请您提供一下Citesser 和 Pubmed 的参数配置!非常感谢!
The text was updated successfully, but these errors were encountered:
个人理解:
虽然有时候程序中设置了最大的epoch,但是在最大的epoch的地方不一定能够无获得最好的结果。 你看一下中间的epoch是否有好的聚类结果。
Epoch--270: time: 256.188: acc: 0.72821270 nmi: 0.56114512 f_score: 0.62277688 ari: 0.51897839
Sorry, something went wrong.
个人理解: 虽然有时候程序中设置了最大的epoch,但是在最大的epoch的地方不一定能够无获得最好的结果。 你看一下中间的epoch是否有好的聚类结果。 Epoch--270: time: 256.188: acc: 0.72821270 nmi: 0.56114512 f_score: 0.62277688 ari: 0.51897839
您好,我尝试了观察中间结果,acc 的确会出现 0.74 的情况,谢谢!
No branches or pull requests
您好,我尝试按照论文中的描述,调整模型的参数值:
对应到代码中这一部分:
最终在Cora数据集上得到如下结果:
而预期的准确率能达到 0.76。请问我是否还应该修改代码的其他部分?另外如果可以的话,请您提供一下Citesser 和 Pubmed 的参数配置!非常感谢!
The text was updated successfully, but these errors were encountered: