Code for ``Retrieval-Augmented Generative Question Answering for Event Argument Extraction'' [link]
If you use our code, please cite:
@inproceedings{R-GQA,
title = {Retrieval-Augmented Generative Question Answering for Event Argument Extraction},
author={Du, Xinya and Ji, Heng},
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
year = "2022",
publisher = "Association for Computational Linguistics",
}
- sentence_transformers=2.1.0
- pytorch=1.6
- transformers=3.1.0
- pytorch-lightning=1.0.6
- spacy=3.0 # conflicts with transformers
- pytorch-struct=0.4
- ACE05 (Access from LDC and preprocessing following OneIE. In this repo, we provide toy example under
./data_toy
. - WikiEvents: The original dataset release is here.
-
Train
./scripts/toy_train_ace_ir_yn.sh
-
Test
./scripts/toy_test_ace_ir_yn.sh
-
Evaluation (on toy test file)
DATA_DIR=data_toy/ace/json
CKPT_NAME=gen_ir_yn
python src/genie/scorer.py --gen-file=checkpoints/${CKPT_NAME}-pred/predictions.jsonl --dataset=ACE \
--test-file=${DATA_DIR}/toy.test.oneie.json \
--output-file=${DATA_DIR}/predict.toy.test.oneie.json \
In this repo, we tackle the task where the event trigger is provided. You are welcome to use our prior implementations for EEQA [link] to get trigger extraction results first.
We provide epoch=5.ckpt
for directly running inference on the toy data here.