forked from chainer/chainerrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ddpg_batch_gym.py
194 lines (172 loc) · 7.99 KB
/
train_ddpg_batch_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
from future import standard_library
standard_library.install_aliases() # NOQA
import argparse
import functools
import sys
import chainer
from chainer import optimizers
import gym
from gym import spaces
import numpy as np
import chainerrl
from chainerrl.agents.ddpg import DDPG
from chainerrl.agents.ddpg import DDPGModel
from chainerrl import experiments
from chainerrl import explorers
from chainerrl import misc
from chainerrl import policy
from chainerrl import q_functions
from chainerrl import replay_buffer
def main():
import logging
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--env', type=str, default='Humanoid-v2')
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--final-exploration-steps',
type=int, default=10 ** 6)
parser.add_argument('--actor-lr', type=float, default=1e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--steps', type=int, default=10 ** 7)
parser.add_argument('--n-hidden-channels', type=int, default=300)
parser.add_argument('--n-hidden-layers', type=int, default=3)
parser.add_argument('--replay-start-size', type=int, default=5000)
parser.add_argument('--n-update-times', type=int, default=1)
parser.add_argument('--target-update-interval',
type=int, default=1)
parser.add_argument('--target-update-method',
type=str, default='soft', choices=['hard', 'soft'])
parser.add_argument('--soft-update-tau', type=float, default=1e-2)
parser.add_argument('--update-interval', type=int, default=4)
parser.add_argument('--eval-n-runs', type=int, default=100)
parser.add_argument('--eval-interval', type=int, default=10 ** 5)
parser.add_argument('--gamma', type=float, default=0.995)
parser.add_argument('--minibatch-size', type=int, default=200)
parser.add_argument('--render', action='store_true')
parser.add_argument('--demo', action='store_true')
parser.add_argument('--use-bn', action='store_true', default=False)
parser.add_argument('--monitor', action='store_true')
parser.add_argument('--reward-scale-factor', type=float, default=1e-2)
parser.add_argument('--num-envs', type=int, default=1)
args = parser.parse_args()
args.outdir = experiments.prepare_output_dir(
args, args.outdir, argv=sys.argv)
print('Output files are saved in {}'.format(args.outdir))
# Set a random seed used in ChainerRL
misc.set_random_seed(args.seed, gpus=(args.gpu,))
def clip_action_filter(a):
return np.clip(a, action_space.low, action_space.high)
def reward_filter(r):
return r * args.reward_scale_factor
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
assert process_seeds.max() < 2 ** 32
def make_env(idx, test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
process_seed = int(process_seeds[idx])
env_seed = 2 ** 32 - 1 - process_seed if test else process_seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = chainerrl.wrappers.Monitor(env, args.outdir)
if isinstance(env.action_space, spaces.Box):
misc.env_modifiers.make_action_filtered(env, clip_action_filter)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
if args.render and not test:
env = chainerrl.wrappers.Render(env)
return env
def make_batch_env(test):
return chainerrl.envs.MultiprocessVectorEnv(
[functools.partial(make_env, idx, test)
for idx, env in enumerate(range(args.num_envs))])
sample_env = make_env(0, test=False)
timestep_limit = sample_env.spec.tags.get(
'wrapper_config.TimeLimit.max_episode_steps')
obs_size = np.asarray(sample_env.observation_space.shape).prod()
action_space = sample_env.action_space
action_size = np.asarray(action_space.shape).prod()
if args.use_bn:
q_func = q_functions.FCBNLateActionSAQFunction(
obs_size, action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
normalize_input=True)
pi = policy.FCBNDeterministicPolicy(
obs_size, action_size=action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
min_action=action_space.low, max_action=action_space.high,
bound_action=True,
normalize_input=True)
else:
q_func = q_functions.FCSAQFunction(
obs_size, action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers)
pi = policy.FCDeterministicPolicy(
obs_size, action_size=action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
min_action=action_space.low, max_action=action_space.high,
bound_action=True)
model = DDPGModel(q_func=q_func, policy=pi)
opt_a = optimizers.Adam(alpha=args.actor_lr)
opt_c = optimizers.Adam(alpha=args.critic_lr)
opt_a.setup(model['policy'])
opt_c.setup(model['q_function'])
opt_a.add_hook(chainer.optimizer.GradientClipping(1.0), 'hook_a')
opt_c.add_hook(chainer.optimizer.GradientClipping(1.0), 'hook_c')
rbuf = replay_buffer.ReplayBuffer(5 * 10 ** 5)
def random_action():
a = action_space.sample()
if isinstance(a, np.ndarray):
a = a.astype(np.float32)
return a
ou_sigma = (action_space.high - action_space.low) * 0.2
explorer = explorers.AdditiveOU(sigma=ou_sigma)
agent = DDPG(model, opt_a, opt_c, rbuf, gamma=args.gamma,
explorer=explorer, replay_start_size=args.replay_start_size,
target_update_method=args.target_update_method,
target_update_interval=args.target_update_interval,
update_interval=args.update_interval,
soft_update_tau=args.soft_update_tau,
n_times_update=args.n_update_times,
gpu=args.gpu, minibatch_size=args.minibatch_size)
if len(args.load) > 0:
agent.load(args.load)
if args.demo:
eval_stats = experiments.eval_performance(
env=make_batch_env(test=True),
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
experiments.train_agent_batch_with_evaluation(
agent=agent, env=make_batch_env(test=False), steps=args.steps,
eval_env=make_batch_env(test=True), eval_n_steps=None,
eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval,
outdir=args.outdir,
max_episode_len=timestep_limit)
if __name__ == '__main__':
main()