-
Notifications
You must be signed in to change notification settings - Fork 8
/
utils.py
104 lines (80 loc) · 2.63 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import logging
import numpy as np
import time
import torch
from torch.nn import init
import torch.nn.functional as F
import torch.utils.data as data
from PIL import Image
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.count = 0
self.sum = 0.0
self.val = 0.0
self.avg = 0.0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def norm(x):
n = np.linalg.norm(x)
return x / n
def val(loader, args, t_model, s_model, logger, epoch):
s_model.eval()
acc_record = AverageMeter()
loss_record = AverageMeter()
start = time.time()
for x, target in loader:
x = x.cuda()
target = target.cuda()
with torch.no_grad():
_, output = s_model(x, is_feat=True)
loss = F.cross_entropy(output, target)
batch_acc = accuracy(output, target, topk=(1,))[0]
acc_record.update(batch_acc.item(), x.size(0))
loss_record.update(loss.item(), x.size(0))
run_time = time.time() - start
if logger is not None:
logger.add_scalar('val/cls_loss', loss_record.avg, epoch+1)
logger.add_scalar('val/cls_acc', acc_record.avg, epoch+1)
info = 'student_test_Epoch:{:03d}\t run_time:{:.2f}\t cls_acc:{:.2f}\n'.format(
epoch+1, run_time, acc_record.avg)
print(info)
return acc_record.avg
def cal_center(loader, args, model):
model.eval()
feat = []
label = []
for x, target in loader:
x = x.cuda()
target = target.cuda()
with torch.no_grad():
batch_feat, output = model(x, is_feat=True)
feat.append(batch_feat[-1])
label.append(target)
feat = torch.cat(feat, dim=0).cpu().numpy()
label = torch.cat(label, dim=0).cpu().numpy()
center = []
for i in range(max(label)+1):
index = np.where(label==i)[0]
center.append(np.mean(feat[index], axis=0))
center = np.vstack(center)
center = torch.from_numpy(center).cuda()
return center