Skip to content
/ ADL Public

[CVPR 2024] Adaptive Multi-Modal Cross-Entropy Loss for Stereo Matching

License

Notifications You must be signed in to change notification settings

xxxupeng/ADL

Repository files navigation

Adaptive Multi-Modal Cross-Entropy Loss for Stereo Matching

Abstract

Despite the great success of deep learning in stereo matching, recovering accurate disparity maps is still challenging. Currently, L1 and cross-entropy are the two most widely used losses for stereo network training. Compared with the former, the latter usually performs better thanks to its probability modeling and direct supervision to the cost volume. However, how to accurately model the stereo ground-truth for cross-entropy loss remains largely under-explored. Existing works simply assume that the ground-truth distributions are uni-modal, which ignores the fact that most of the edge pixels can be multi-modal. In this paper, a novel adaptive multi-modal cross-entropy loss (ADL) is proposed to guide the networks to learn different distribution patterns for each pixel. Moreover, we optimize the disparity estimator to further alleviate the bleeding or misalignment artifacts in inference. Extensive experimental results on public datasets show that our method is general and can help classic stereo networks regain state-of-the-art performance. In particular, GANet with our method ranks $1^{st}$ on both the KITTI 2015 and 2012 benchmarks among the published methods. Meanwhile, excellent synthetic-to-realistic generalization performance can be achieved by simply replacing the traditional loss with ours.

Additional Experimental Results

In addition to the three baselines (PSMNet, GwcNet, and GANet) reported in the paper, we also retrained PCWNet and tested on the SceneFlow test set and KITTI 2015 benchmark. The results are as follows:

SceneFlow:

EPE 1px 3px
0.57 4.29 1.95

KITTI 2015:

D1-bg D1-fg D1-all
1.39 2.64 1.60

Environment

  • python == 3.9.12
  • pytorch == 1.11.0
  • torchvision == 0.12.0
  • numpy == 1.21.5
  • apex == 0.1

Datasets

Download the datasets, and change the datapath args. in ./scripts/sceneflow.sh or ./scripts/kitti.sh.

Pretrained Models

Pretrained models can be downloaded from Google Drive.

Training

We use the Distributed Data Parallel (DDP) to train the model.

Please execute the bash shell in ./scripts/, as:

/bin/bash ./scripts/sceneflow.sh
/bin/bash ./scripts/kitti.sh

Training logs are saved in ./log/.

Change loss_func args. for different losses:

  • SL1: smooth L1 loss
  • ADL: ADaptive multi-modal cross-entropy Loss

If you want to train the GANet, please install the NVIDIA-Apex package and compile the GANet libs.

Evaluation

Please uncomment and execute val.py in the shell scripts.

EPE, 1px, 2px, 3px, D1, 4px, speed are reported.

Change estimator args. for different disparity estimators:

  • softargmax: soft-argmax
  • argmax: argmax
  • SME: Single-Modal disparity Estimator
  • DME: Dominant-Modal disparity Estimator

To Do List

Currently, the code of dataloader and evaluation are based on PSMNet, and DDP is based on DSGN. A convenient stereo toolbox is coming soon to support multiple dataloaders, stereo backbones, loss functions, disparity estimators, and the performance or generalization evaluation, with just a few lines of code.

Citation

@InProceedings{Xu_2024_CVPR,
    author    = {Xu, Peng and Xiang, Zhiyu and Qiao, Chengyu and Fu, Jingyun and Pu, Tianyu},
    title     = {Adaptive Multi-Modal Cross-Entropy Loss for Stereo Matching},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {5135-5144}
}

Acknowledgement

This project is based on the PSMNet, GwcNet, GANet, and DSGN, we thank the original authors for their excellent works.

About

[CVPR 2024] Adaptive Multi-Modal Cross-Entropy Loss for Stereo Matching

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published