Implementation of FCOS in PyTorch.
FCOS: Fully Convolutional One-Stage Object Detection.
https://arxiv.org/abs/1904.01355
mAP(This)~700px | mAP(Paper)-700px | Download | MD5 |
---|---|---|---|
37.5% | 37.3% | Baidu:n1v6 | 749c7c972eb2f56cf4ab1d8a61b34c99 |
iters: 87960 epoches: 12
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.375
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.559
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.403
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.206
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.415
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.495
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.310
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.498
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.536
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.316
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.590
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677
1. Install (PyTorch >= 1.0.0)
sh install.sh
2. Training COCO 1x
python tools/train.py --cfg configs/fcos_r50_sq1025_1x.yaml
3. COCO Eval
copy fcos_r50_sq1025_1x.pkl to weights/
python tools/eval_mscoco.py --cfg configs/fcos_r50_sq1025_1x.yaml
4. Demo
python tools/demo.py --cfg configs/fcos_r50_sq1025_1x.yaml