Skip to content

Latest commit

 

History

History
59 lines (41 loc) · 2.49 KB

README.md

File metadata and controls

59 lines (41 loc) · 2.49 KB

Project Title

This project implements different loss functions using PyTorch.

Table of Contents

Introduction

Installation

Usage

from losses import CrossEntropyLoss, DiceLoss, DiceCELoss, FocalLoss

# input is logits of (N, *)
# target is (N, C), C is class index
criterion = DiceLoss()
loss = criterion(input, target)

Loss Functions

This project implements the following loss functions:

Loss Name Status Link Task
Cross-entropy loss ✅ passed cross_entropy_loss.py Segmentation
Binary cross-entropy loss Row 2, Column 2 Row 2, Column 3
Mean squared error (MSE) loss Row 3, Column 2 Row 3, Column 3
Mean absolute error (MAE) loss Row 4, Column 2 Row 4, Column 3
Dice loss ✅ passed dice_loss.py Segmentation
Dice Cross Entropy loss ✅ passed dice_loss.py Segmentation
Focal loss ✅ passed focal_loss.py Segmentation
Poly Cross Entropy Loss ✅ passed poly_loss.py Classification
Smooth Poly Loss ✅ passed poly_loss.py Classification

Examples

Contributing

Contributions are welcome! If you have a suggestion for a new loss function or an improvement to an existing one, please open an issue or a pull request.

License

This project is licensed under the MIT License - see the LICENSE file for details.