forked from ethereum-optimism/op-geth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stacktrie.go
479 lines (427 loc) · 14.7 KB
/
stacktrie.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"errors"
"sync"
"github.com/yanikitat/op-geth/common"
"github.com/yanikitat/op-geth/core/types"
"github.com/yanikitat/op-geth/log"
"github.com/yanikitat/op-geth/metrics"
)
var (
stPool = sync.Pool{New: func() any { return new(stNode) }}
_ = types.TrieHasher((*StackTrie)(nil))
)
// StackTrieOptions contains the configured options for manipulating the stackTrie.
type StackTrieOptions struct {
Writer func(path []byte, hash common.Hash, blob []byte) // The function to commit the dirty nodes
Cleaner func(path []byte) // The function to clean up dangling nodes
SkipLeftBoundary bool // Flag whether the nodes on the left boundary are skipped for committing
SkipRightBoundary bool // Flag whether the nodes on the right boundary are skipped for committing
boundaryGauge metrics.Gauge // Gauge to track how many boundary nodes are met
}
// NewStackTrieOptions initializes an empty options for stackTrie.
func NewStackTrieOptions() *StackTrieOptions { return &StackTrieOptions{} }
// WithWriter configures trie node writer within the options.
func (o *StackTrieOptions) WithWriter(writer func(path []byte, hash common.Hash, blob []byte)) *StackTrieOptions {
o.Writer = writer
return o
}
// WithCleaner configures the cleaner in the option for removing dangling nodes.
func (o *StackTrieOptions) WithCleaner(cleaner func(path []byte)) *StackTrieOptions {
o.Cleaner = cleaner
return o
}
// WithSkipBoundary configures whether the left and right boundary nodes are
// filtered for committing, along with a gauge metrics to track how many
// boundary nodes are met.
func (o *StackTrieOptions) WithSkipBoundary(skipLeft, skipRight bool, gauge metrics.Gauge) *StackTrieOptions {
o.SkipLeftBoundary = skipLeft
o.SkipRightBoundary = skipRight
o.boundaryGauge = gauge
return o
}
// StackTrie is a trie implementation that expects keys to be inserted
// in order. Once it determines that a subtree will no longer be inserted
// into, it will hash it and free up the memory it uses.
type StackTrie struct {
options *StackTrieOptions
root *stNode
h *hasher
first []byte // The (hex-encoded without terminator) key of first inserted entry, tracked as left boundary.
last []byte // The (hex-encoded without terminator) key of last inserted entry, tracked as right boundary.
}
// NewStackTrie allocates and initializes an empty trie.
func NewStackTrie(options *StackTrieOptions) *StackTrie {
if options == nil {
options = NewStackTrieOptions()
}
return &StackTrie{
options: options,
root: stPool.Get().(*stNode),
h: newHasher(false),
}
}
// Update inserts a (key, value) pair into the stack trie.
func (t *StackTrie) Update(key, value []byte) error {
if len(value) == 0 {
return errors.New("trying to insert empty (deletion)")
}
k := keybytesToHex(key)
k = k[:len(k)-1] // chop the termination flag
if bytes.Compare(t.last, k) >= 0 {
return errors.New("non-ascending key order")
}
// track the first and last inserted entries.
if t.first == nil {
t.first = append([]byte{}, k...)
}
if t.last == nil {
t.last = append([]byte{}, k...) // allocate key slice
} else {
t.last = append(t.last[:0], k...) // reuse key slice
}
t.insert(t.root, k, value, nil)
return nil
}
// MustUpdate is a wrapper of Update and will omit any encountered error but
// just print out an error message.
func (t *StackTrie) MustUpdate(key, value []byte) {
if err := t.Update(key, value); err != nil {
log.Error("Unhandled trie error in StackTrie.Update", "err", err)
}
}
// Reset resets the stack trie object to empty state.
func (t *StackTrie) Reset() {
t.options = NewStackTrieOptions()
t.root = stPool.Get().(*stNode)
t.first = nil
t.last = nil
}
// stNode represents a node within a StackTrie
type stNode struct {
typ uint8 // node type (as in branch, ext, leaf)
key []byte // key chunk covered by this (leaf|ext) node
val []byte // value contained by this node if it's a leaf
children [16]*stNode // list of children (for branch and exts)
}
// newLeaf constructs a leaf node with provided node key and value. The key
// will be deep-copied in the function and safe to modify afterwards, but
// value is not.
func newLeaf(key, val []byte) *stNode {
st := stPool.Get().(*stNode)
st.typ = leafNode
st.key = append(st.key, key...)
st.val = val
return st
}
// newExt constructs an extension node with provided node key and child. The
// key will be deep-copied in the function and safe to modify afterwards.
func newExt(key []byte, child *stNode) *stNode {
st := stPool.Get().(*stNode)
st.typ = extNode
st.key = append(st.key, key...)
st.children[0] = child
return st
}
// List all values that stNode#nodeType can hold
const (
emptyNode = iota
branchNode
extNode
leafNode
hashedNode
)
func (n *stNode) reset() *stNode {
n.key = n.key[:0]
n.val = nil
for i := range n.children {
n.children[i] = nil
}
n.typ = emptyNode
return n
}
// Helper function that, given a full key, determines the index
// at which the chunk pointed by st.keyOffset is different from
// the same chunk in the full key.
func (n *stNode) getDiffIndex(key []byte) int {
for idx, nibble := range n.key {
if nibble != key[idx] {
return idx
}
}
return len(n.key)
}
// Helper function to that inserts a (key, value) pair into
// the trie.
func (t *StackTrie) insert(st *stNode, key, value []byte, path []byte) {
switch st.typ {
case branchNode: /* Branch */
idx := int(key[0])
// Unresolve elder siblings
for i := idx - 1; i >= 0; i-- {
if st.children[i] != nil {
if st.children[i].typ != hashedNode {
t.hash(st.children[i], append(path, byte(i)))
}
break
}
}
// Add new child
if st.children[idx] == nil {
st.children[idx] = newLeaf(key[1:], value)
} else {
t.insert(st.children[idx], key[1:], value, append(path, key[0]))
}
case extNode: /* Ext */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Check if chunks are identical. If so, recurse into
// the child node. Otherwise, the key has to be split
// into 1) an optional common prefix, 2) the fullnode
// representing the two differing path, and 3) a leaf
// for each of the differentiated subtrees.
if diffidx == len(st.key) {
// Ext key and key segment are identical, recurse into
// the child node.
t.insert(st.children[0], key[diffidx:], value, append(path, key[:diffidx]...))
return
}
// Save the original part. Depending if the break is
// at the extension's last byte or not, create an
// intermediate extension or use the extension's child
// node directly.
var n *stNode
if diffidx < len(st.key)-1 {
// Break on the non-last byte, insert an intermediate
// extension. The path prefix of the newly-inserted
// extension should also contain the different byte.
n = newExt(st.key[diffidx+1:], st.children[0])
t.hash(n, append(path, st.key[:diffidx+1]...))
} else {
// Break on the last byte, no need to insert
// an extension node: reuse the current node.
// The path prefix of the original part should
// still be same.
n = st.children[0]
t.hash(n, append(path, st.key...))
}
var p *stNode
if diffidx == 0 {
// the break is on the first byte, so
// the current node is converted into
// a branch node.
st.children[0] = nil
p = st
st.typ = branchNode
} else {
// the common prefix is at least one byte
// long, insert a new intermediate branch
// node.
st.children[0] = stPool.Get().(*stNode)
st.children[0].typ = branchNode
p = st.children[0]
}
// Create a leaf for the inserted part
o := newLeaf(key[diffidx+1:], value)
// Insert both child leaves where they belong:
origIdx := st.key[diffidx]
newIdx := key[diffidx]
p.children[origIdx] = n
p.children[newIdx] = o
st.key = st.key[:diffidx]
case leafNode: /* Leaf */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Overwriting a key isn't supported, which means that
// the current leaf is expected to be split into 1) an
// optional extension for the common prefix of these 2
// keys, 2) a fullnode selecting the path on which the
// keys differ, and 3) one leaf for the differentiated
// component of each key.
if diffidx >= len(st.key) {
panic("Trying to insert into existing key")
}
// Check if the split occurs at the first nibble of the
// chunk. In that case, no prefix extnode is necessary.
// Otherwise, create that
var p *stNode
if diffidx == 0 {
// Convert current leaf into a branch
st.typ = branchNode
p = st
st.children[0] = nil
} else {
// Convert current node into an ext,
// and insert a child branch node.
st.typ = extNode
st.children[0] = stPool.Get().(*stNode)
st.children[0].typ = branchNode
p = st.children[0]
}
// Create the two child leaves: one containing the original
// value and another containing the new value. The child leaf
// is hashed directly in order to free up some memory.
origIdx := st.key[diffidx]
p.children[origIdx] = newLeaf(st.key[diffidx+1:], st.val)
t.hash(p.children[origIdx], append(path, st.key[:diffidx+1]...))
newIdx := key[diffidx]
p.children[newIdx] = newLeaf(key[diffidx+1:], value)
// Finally, cut off the key part that has been passed
// over to the children.
st.key = st.key[:diffidx]
st.val = nil
case emptyNode: /* Empty */
st.typ = leafNode
st.key = key
st.val = value
case hashedNode:
panic("trying to insert into hash")
default:
panic("invalid type")
}
}
// hash converts st into a 'hashedNode', if possible. Possible outcomes:
//
// 1. The rlp-encoded value was >= 32 bytes:
// - Then the 32-byte `hash` will be accessible in `st.val`.
// - And the 'st.type' will be 'hashedNode'
//
// 2. The rlp-encoded value was < 32 bytes
// - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
// - And the 'st.type' will be 'hashedNode' AGAIN
//
// This method also sets 'st.type' to hashedNode, and clears 'st.key'.
func (t *StackTrie) hash(st *stNode, path []byte) {
var (
blob []byte // RLP-encoded node blob
internal [][]byte // List of node paths covered by the extension node
)
switch st.typ {
case hashedNode:
return
case emptyNode:
st.val = types.EmptyRootHash.Bytes()
st.key = st.key[:0]
st.typ = hashedNode
return
case branchNode:
var nodes fullNode
for i, child := range st.children {
if child == nil {
nodes.Children[i] = nilValueNode
continue
}
t.hash(child, append(path, byte(i)))
if len(child.val) < 32 {
nodes.Children[i] = rawNode(child.val)
} else {
nodes.Children[i] = hashNode(child.val)
}
st.children[i] = nil
stPool.Put(child.reset()) // Release child back to pool.
}
nodes.encode(t.h.encbuf)
blob = t.h.encodedBytes()
case extNode:
// recursively hash and commit child as the first step
t.hash(st.children[0], append(path, st.key...))
// Collect the path of internal nodes between shortNode and its **in disk**
// child. This is essential in the case of path mode scheme to avoid leaving
// danging nodes within the range of this internal path on disk, which would
// break the guarantee for state healing.
if len(st.children[0].val) >= 32 && t.options.Cleaner != nil {
for i := 1; i < len(st.key); i++ {
internal = append(internal, append(path, st.key[:i]...))
}
}
// encode the extension node
n := shortNode{Key: hexToCompactInPlace(st.key)}
if len(st.children[0].val) < 32 {
n.Val = rawNode(st.children[0].val)
} else {
n.Val = hashNode(st.children[0].val)
}
n.encode(t.h.encbuf)
blob = t.h.encodedBytes()
stPool.Put(st.children[0].reset()) // Release child back to pool.
st.children[0] = nil
case leafNode:
st.key = append(st.key, byte(16))
n := shortNode{Key: hexToCompactInPlace(st.key), Val: valueNode(st.val)}
n.encode(t.h.encbuf)
blob = t.h.encodedBytes()
default:
panic("invalid node type")
}
st.typ = hashedNode
st.key = st.key[:0]
// Skip committing the non-root node if the size is smaller than 32 bytes.
if len(blob) < 32 && len(path) > 0 {
st.val = common.CopyBytes(blob)
return
}
// Write the hash to the 'val'. We allocate a new val here to not mutate
// input values.
st.val = t.h.hashData(blob)
// Short circuit if the stack trie is not configured for writing.
if t.options.Writer == nil {
return
}
// Skip committing if the node is on the left boundary and stackTrie is
// configured to filter the boundary.
if t.options.SkipLeftBoundary && bytes.HasPrefix(t.first, path) {
if t.options.boundaryGauge != nil {
t.options.boundaryGauge.Inc(1)
}
return
}
// Skip committing if the node is on the right boundary and stackTrie is
// configured to filter the boundary.
if t.options.SkipRightBoundary && bytes.HasPrefix(t.last, path) {
if t.options.boundaryGauge != nil {
t.options.boundaryGauge.Inc(1)
}
return
}
// Clean up the internal dangling nodes covered by the extension node.
// This should be done before writing the node to adhere to the committing
// order from bottom to top.
for _, path := range internal {
t.options.Cleaner(path)
}
t.options.Writer(path, common.BytesToHash(st.val), blob)
}
// Hash will firstly hash the entire trie if it's still not hashed and then commit
// all nodes to the associated database. Actually most of the trie nodes have been
// committed already. The main purpose here is to commit the nodes on right boundary.
//
// For stack trie, Hash and Commit are functionally identical.
func (t *StackTrie) Hash() common.Hash {
n := t.root
t.hash(n, nil)
return common.BytesToHash(n.val)
}
// Commit will firstly hash the entire trie if it's still not hashed and then commit
// all nodes to the associated database. Actually most of the trie nodes have been
// committed already. The main purpose here is to commit the nodes on right boundary.
//
// For stack trie, Hash and Commit are functionally identical.
func (t *StackTrie) Commit() common.Hash {
return t.Hash()
}