forked from sktime/sktime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pyproject.toml
441 lines (425 loc) · 15.6 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
[project]
name = "sktime"
version = "0.34.0"
description = "A unified framework for machine learning with time series"
readme = "README.md"
keywords = [
"data-mining",
"data-science",
"forecasting",
"machine-learning",
"scikit-learn",
"time-series",
"time-series-analysis",
"time-series-classification",
"time-series-regression",
]
license = { file = "LICENSE" }
# sktime is governed by the Community Council, see docs/source/get_involved/governance
# use the email or sktime discord (governance channel) to get in touch
maintainers = [
{ name = "sktime developers", email = "sktime.toolbox@gmail.com" },
{ name = "Felix Hirwa Nshuti" },
{ name = "Franz Király" },
{ name = "Marc Rovira" },
{ name = "Ugochukwu Onyeka" },
]
# sktime has a large number of contributors,
# for full credits see contributors.md
authors = [
{ name = "sktime developers", email = "sktime.toolbox@gmail.com" },
]
requires-python = ">=3.9,<3.14"
classifiers = [
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: BSD License",
"Operating System :: MacOS",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX",
"Operating System :: Unix",
"Programming Language :: Python",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3.13",
"Topic :: Scientific/Engineering",
"Topic :: Software Development",
]
# core dependencies of sktime
# this set should be kept minimal!
dependencies = [
"joblib<1.5,>=1.2.0", # required for parallel processing
"numpy<2.2,>=1.21", # required for framework layer and base class logic
"packaging", # for estimator specific dependency parsing
"pandas<2.3.0,>=1.1", # pandas is the main in-memory data container
"scikit-base>=0.6.1,<0.12.0", # base module for sklearn compatible base API
"scikit-learn>=0.24,<1.6.0", # required for estimators and framework layer
"scipy<2.0.0,>=1.2", # required for estimators and framework layer
]
[project.optional-dependencies]
# there are the following dependency sets:
# - all_extras_pandas2, all_extras - all soft dependencies
# - single-task soft dependencies, e.g., forecasting, classification, etc.
# - dev - the developer dependency set, for contributors to sktime
# - CI related, e.g., binder, docs, tests. Not for users of sktime.
#
# soft dependencies are not required for the core functionality of sktime
# but are required by popular estimators, e.g., prophet, tbats, etc.
# all soft dependencies
#
# users can install via "pip install sktime[all_extras]"
# or "pip install sktime[all_extras_pandas2]", to install only pandas 2 compatible deps
#
all_extras = [
'arch>=5.6,<7.1.0; python_version < "3.13"',
'autots<0.7,>=0.6.1',
'cloudpickle; python_version < "3.13"',
'dash!=2.9.0; python_version < "3.13"',
"dask<2024.8.1; extra == 'dataframe'",
'dtaidistance<2.4; python_version < "3.13"',
'dtw-python; python_version < "3.13"',
'esig==0.9.7; python_version < "3.10"',
'filterpy>=1.4.5; python_version < "3.11"',
'gluonts>=0.9; python_version < "3.13"',
'h5py; python_version < "3.12"',
'hmmlearn>=0.2.7; python_version < "3.11"',
'holidays; python_version < "3.13"',
'keras-self-attention; python_version < "3.11"',
'matplotlib!=3.9.1,>=3.3.2; python_version < "3.13"',
'mne; python_version < "3.13"',
'numba<0.61,>=0.53; python_version < "3.13"',
'optuna<4.1; python_version < "3.13"',
'pmdarima!=1.8.1,<3.0.0,>=1.8; python_version < "3.12"',
'polars[pandas]>=0.20,<2.0; python_version < "3.13"',
'prophet>=1.1; python_version < "3.12"',
'pycatch22<0.4.6; python_version < "3.13"',
'pyod>=0.8; python_version < "3.11"',
"pyts<0.14.0; python_version < '3.12'",
'scikit-optimize; python_version < "3.13"',
'scikit_posthocs>=0.6.5; python_version < "3.13"',
'seaborn>=0.11; python_version < "3.13"',
'seasonal; python_version < "3.13"',
'skforecast<0.14,>=0.12.1; python_version < "3.13"',
"skpro>=2,<2.8.0",
'statsforecast<1.8.0,>=1.0.0; python_version < "3.12"',
'statsmodels>=0.12.1; python_version < "3.13"',
'stumpy>=1.5.1; python_version < "3.11"',
'tbats>=1.1; python_version < "3.12"',
'temporian<0.9.0,>=0.7.0,!=0.8.0; python_version < "3.12" and sys_platform != "win32"',
'tensorflow<2.17,>=2; python_version < "3.12"',
'tsfresh>=0.17; python_version < "3.12"',
'tslearn<0.7.0,!=0.6.0,>=0.5.2; python_version < "3.11"',
'u8darts>=0.29.0,<0.32.0; python_version < "3.13"',
'xarray; python_version < "3.13"',
]
# all soft dependencies compatible with pandas 2
all_extras_pandas2 = [
'arch>=5.6,<7.1.0; python_version < "3.13"',
'autots<0.7,>=0.6.1; python_version < "3.13"',
'cloudpickle; python_version < "3.13"',
'dash!=2.9.0; python_version < "3.13"',
"dask<2024.10.1; extra == 'dataframe'",
'dtaidistance<2.4; python_version < "3.13"',
'dtw-python; python_version < "3.13"',
'esig==0.9.7; python_version < "3.10"',
'filterpy>=1.4.5; python_version < "3.11"',
'gluonts>=0.9; python_version < "3.13"',
'h5py; python_version < "3.12"',
'hmmlearn>=0.2.7; python_version < "3.11"',
'holidays; python_version < "3.13"',
'keras-self-attention; python_version < "3.11"',
'matplotlib!=3.9.1,>=3.3.2; python_version < "3.13"',
'mne; python_version < "3.13"',
'numba<0.61,>=0.53; python_version < "3.13"',
'optuna<4.1; python_version < "3.13"',
'pmdarima!=1.8.1,<3.0.0,>=1.8; python_version < "3.12"',
'polars[pandas]>=0.20,<2.0; python_version < "3.13"',
'prophet>=1.1; python_version < "3.12"',
'pycatch22<0.4.6; python_version < "3.13"',
'pyod>=0.8; python_version < "3.11"',
'scikit_posthocs>=0.6.5; python_version < "3.13"',
'seaborn>=0.11; python_version < "3.13"',
'seasonal; python_version < "3.13"',
'skforecast<0.14,>=0.12.1; python_version < "3.13"',
'skpro>=2,<2.8.0',
'statsforecast<1.8.0,>=1.0.0; python_version < "3.12"',
'statsmodels>=0.12.1; python_version < "3.13"',
'stumpy>=1.5.1; python_version < "3.11"',
'tbats>=1.1; python_version < "3.12"',
'temporian<0.9.0,>=0.7.0,!=0.8.0; python_version < "3.12" and sys_platform != "win32"',
'tensorflow<2.17,>=2; python_version < "3.12"',
'tsbootstrap<0.2,>=0.1.0; python_version < "3.13"',
'tsfresh>=0.17; python_version < "3.12"',
'tslearn<0.7.0,!=0.6.0,>=0.5.2; python_version < "3.11"',
'u8darts>=0.29.0,<0.32.0; python_version < "3.13"',
'xarray; python_version < "3.13"',
]
# single-task dependencies, e.g., forecasting, classification, etc.
# manually curated and intentionally smaller to avoid dependency conflicts
# names are identical with the names of the modules and estimator type strings
# dependency sets are selected to cover the most popular estimators in each module
# (this is a subjective choice, and may change over time as the ecosystem evolves,
# removals are rare and always accompanied by a deprecation warning)
#
# users can install via "pip install sktime[forecasting,transformations]" etc
#
alignment = [
'dtaidistance<2.4; python_version < "3.13"',
'dtw-python>=1.3,<1.6; python_version < "3.13"',
'numba<0.61,>=0.53; python_version < "3.13"',
]
annotation = [
'hmmlearn<0.4,>=0.2.7; python_version < "3.13"',
'numba<0.61,>=0.53; python_version < "3.13"',
'pyod<1.2,>=0.8; python_version < "3.12"',
]
classification = [
'esig<0.10,>=0.9.7; python_version < "3.11"',
'numba<0.61,>=0.53; python_version < "3.13"',
'tensorflow<2.17,>=2; python_version < "3.12"',
'tsfresh<0.21,>=0.17; python_version < "3.12"',
]
clustering = [
'numba<0.61,>=0.53; python_version < "3.13"',
'tslearn<0.7.0,!=0.6.0,>=0.5.2; python_version < "3.12"',
]
detection = [
'hmmlearn<0.4,>=0.2.7; python_version < "3.13"',
'numba<0.61,>=0.53; python_version < "3.13"',
'pyod<1.2,>=0.8; python_version < "3.12"',
]
forecasting = [
'arch>=5.6,<7.1; python_version < "3.13"',
'autots<0.7,>=0.6.1; python_version < "3.13"',
'pmdarima!=1.8.1,<2.1,>=1.8; python_version < "3.12"',
'prophet<1.2,>=1.1; python_version < "3.13"',
'skforecast<0.14,>=0.12.1; python_version < "3.13"',
"skpro>=2,<2.8.0",
'statsforecast<1.8.0,>=1.0.0; python_version < "3.12"',
'statsmodels<0.15,>=0.12.1; python_version < "3.13"',
'tbats<1.2,>=1.1; python_version < "3.12"',
]
networks = [
'keras-self-attention<0.52,>=0.51; python_version < "3.13"',
'tensorflow<2.17,>=2; python_version < "3.12"',
]
param_est = [
'seasonal<0.4,>=0.3.1; python_version < "3.13"',
'statsmodels<0.15,>=0.12.1; python_version < "3.13"',
]
regression = [
'numba<0.61,>=0.53; python_version < "3.13"',
'tensorflow<2.17,>=2; python_version < "3.12"',
]
transformations = [
'esig<0.10,>=0.9.7; python_version < "3.11"',
'filterpy<1.5,>=1.4.5; python_version < "3.13"',
'holidays>=0.29,<0.59; python_version < "3.13"',
'mne>=1.5,<1.9; python_version < "3.13"',
'numba<0.61,>=0.53; python_version < "3.13"',
'pycatch22>=0.4,<0.4.6; python_version < "3.13"',
'statsmodels<0.15,>=0.12.1; python_version < "3.13"',
'stumpy<1.13,>=1.5.1; python_version < "3.12"',
'temporian<0.9.0,>=0.7.0,!=0.8.0; python_version < "3.12" and sys_platform != "win32"',
'tsfresh<0.21,>=0.17; python_version < "3.12"',
]
# dev - the developer dependency set, for contributors to sktime
dev = [
"backoff",
"httpx",
"pre-commit",
"pytest",
"pytest-randomly",
"pytest-timeout",
"pytest-xdist",
"wheel",
]
# CI related soft dependency sets - not for users of sktime, only for developers
# docs and tests are standard dep sets for development use
# they are stable and subject to deprecation policies
# contributors should use the dev dependency set for contributing to sktime, see above
docs = [
"jupyter",
"myst-parser",
"nbsphinx>=0.8.6",
"numpydoc",
"pydata-sphinx-theme",
"Sphinx!=7.2.0,<9.0.0",
"sphinx-copybutton",
"sphinx-design<0.7.0",
"sphinx-gallery<0.19.0",
"sphinx-issues<6.0.0",
"tabulate",
]
tests = [
"pytest>=7.4,<8.4",
"pytest-randomly<3.16,>=3.15",
"pytest-timeout>=2.1,<2.4",
"pytest-xdist>=3.3,<3.7",
]
# CI related soft dependency sets - not for users of sktime, only for developers
# these are for specual uses and may be changed or removed at any time
binder = [
"jupyter",
"pandas<2.0.0",
"skchange",
]
cython_extras = [
"mrseql < 0.0.3",
'mrsqm; python_version < "3.11"',
"numba<0.61",
]
datasets = [
"rdata",
"requests",
]
dl = [
'FrEIA; python_version < "3.12"',
'neuralforecast<1.8.0,>=1.6.4; python_version < "3.11"',
'peft>=0.10.0; python_version < "3.12"',
'tensorflow<2.17,>=2; python_version < "3.12"',
'torch; python_version < "3.12"',
'transformers[torch]<4.41.0; python_version < "3.12"',
'pykan>=0.2.1,<0.2.7; python_version > "3.9.7"',
'pytorch-forecasting>=1.0.0,<1.2.0; python_version < "3.13"',
'lightning>=2.0; python_version < "3.12"',
'gluonts>=0.14.3; python_version < "3.12"',
'einops>0.7.0; python_version < "3.12"',
'huggingface-hub>=0.23.0; python_version < "3.12"',
'hydra-core; python_version < "3.13"',
]
mlflow = [
"mlflow",
]
mlflow_tests = [
"boto3",
"botocore",
"mlflow",
"moto",
]
numpy1 = [
"numpy<2.0.0",
]
pandas1 = [
"pandas<2.0.0",
]
compatibility_tests = [
'catboost; python_version < "3.13"',
]
[project.urls]
"API Reference" = "https://www.sktime.net/en/stable/api_reference.html"
Documentation = "https://www.sktime.net"
Download = "https://pypi.org/project/sktime/#files"
Homepage = "https://www.sktime.net"
"Release Notes" = "https://www.sktime.net/en/stable/changelog.html"
Repository = "https://github.com/sktime/sktime"
[build-system]
build-backend = "setuptools.build_meta"
requires = [
"setuptools>61",
]
[tool.setuptools.package-data]
sktime = [
"utils/_estimator_html_repr.css",
"*.csv",
"*.csv.gz",
"*.arff",
"*.arff.gz",
"*.txt",
"*.ts",
"*.tsv",
]
[tool.setuptools.packages.find]
exclude = ["tests", "tests.*"]
[tool.ruff]
line-length = 88
exclude = [".git", "sktime/_contrib/*", "examples/blog_posts/*"]
target-version = "py39"
extend-include = ["*.ipynb"]
[tool.ruff.lint]
select = [
# https://pypi.org/project/pycodestyle
"D",
"E",
"W",
# https://pypi.org/project/pyflakes
"F",
# https://pypi.org/project/flake8-bandit
"S",
# https://docs.astral.sh/ruff/rules/#pyupgrade-up
"UP",
"I002", # Missing required imports
"UP008", # Super calls with redundant arguments passed.
"G010", # Deprecated log warn.
"PLR1722", # Use sys.exit() instead of exit() and quit().
"PT014", # pytest-duplicate-parametrize-test-cases.
"PT006", # Checks for the type of parameter names passed to pytest.mark.parametrize.
"PT007", # Checks for the type of parameter values passed to pytest.mark.parametrize.
"PT018", # Checks for assertions that combine multiple independent condition
"RUF001", # Checks for non unicode string literals
"RUF002", # Checks for non unicode string literals
"RUF003", # Checks for non unicode string literals
]
extend-select = [
"I", # isort
"C4", # https://pypi.org/project/flake8-comprehensions
]
ignore=[
"E203", # Whitespace-before-punctuation.
"E402", # Module-import-not-at-top-of-file.
"E731", # Do not assign a lambda expression, use a def.
"RET504", # Unnecessary variable assignment before `return` statement.
"S101", # Use of `assert` detected.
"RUF100", # https://docs.astral.sh/ruff/rules/unused-noqa/
"C408", # Unnecessary dict call - rewrite as a literal.
"UP031", # Use format specifier instead of %
"S102", # Use of excec
"C414", # Unnecessary `list` call within `sorted()`
"S301", # pickle and modules that wrap it can be unsafe
"C416", # Unnecessary list comprehension - rewrite as a generator
"S310", # Audit URL open for permitted schemes
"S202", # Uses of `tarfile.extractall()`
"S307", # Use of possibly insecure function
"C417", # Unnecessary `map` usage (rewrite using a generator expression)
"S605", # Starting a process with a shell, possible injection detected
"E741", # Ambiguous variable name
"S107", # Possible hardcoded password
"S105", # Possible hardcoded password
"PT018", # Checks for assertions that combine multiple independent condition
"S602", # sub process call with shell=True unsafe
"C419", # Unnecessary list comprehension, some are flagged yet are not
"C409", # Unnecessary `list` literal passed to `tuple()` (rewrite as a `tuple` literal)
"S113", # Probable use of httpx call withour timeout
]
allowed-confusables=["σ"]
[tool.ruff.lint.per-file-ignores]
"setup.py" = ["S101"]
"**/__init__.py" = [
"F401", # unused import
]
"**/tests/**" = [
"D",
"S605", # Starting a process with a shell: seems safe, but may be changed in the future; consider rewriting without `shell`
"S607", # Starting a process with a partial executable path
"RET504", # todo:Unnecessary variable assignment before `return` statement
"PT004", # Fixture `tmpdir_unittest_fixture` does not return anything, add leading underscore
"PT011", # `pytest.raises(ValueError)` is too broad, set the `match` parameter or use a more specific exception
"PT012", # `pytest.raises()` block should contain a single simple statement
"PT019", # Fixture `_` without value is injected as parameter, use `@pytest.mark.usefixtures` instead
"PT006" # Checks for the type of parameter names passed to pytest.mark.parametrize.
]
"sktime/libs/uni2ts/*.py" = [
"F722", # Checks for forward annotations that include invalid syntax.
"F821", # Checks for uses of undefined names.
"D100", # Missing docstring in public module
"D101", # Missing docstring in public class
"D102", # Missing docstring in public method
"D103", # Missing docstring in public function
"D104", # Missing docstring in public package
"D106", # Missing docstring in public nested class
]
[tool.ruff.lint.pydocstyle]
convention = "numpy"