-
Notifications
You must be signed in to change notification settings - Fork 26
/
stage1_main.py
639 lines (550 loc) · 24.1 KB
/
stage1_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright2023 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Authors: paper author.
# Special Acknowlegement: Wojciech Zielonka and Justus Thies
# Contact: ps-license@tuebingen.mpg.de
from pathlib import Path
import numpy as np
from tqdm import tqdm
from easydict import EasyDict
import mmcv
import numpy as np
import trimesh
import os
import pickle
import os.path as osp
from tqdm import tqdm
import cv2
import os.path
from functools import reduce
from pathlib import Path
from loguru import logger
import mmcv
from pathlib import Path
import numpy as np
from tqdm import tqdm
from easydict import EasyDict
import mmcv
import time
import numpy as np
import trimesh
import pyrender
import matplotlib.pyplot as plt
import PIL.Image as pil_img
import os
import pickle
import os.path as osp
from tqdm import tqdm
import cv2
import glob
import os.path
from functools import reduce
from pathlib import Path
from loguru import logger
import mmcv
from scipy.ndimage import distance_transform_edt
from pytorch3d.renderer import (
RasterizationSettings, MeshRenderer,
MeshRasterizer,
SoftSilhouetteShader,
)
import torch
import torch.backends.cudnn
import torch.nn.functional as F
from smplx.lbs import vertices2landmarks
import SHOW
from SHOW.loggers.logger import setup_logger
from SHOW.load_models import load_save_pkl
from SHOW.utils import default_timers
from SHOW.utils.metric import MeterBuffer
from SHOW.load_models import load_save_pkl
from SHOW.load_models import load_smplx_model, load_vposer_model
from SHOW.datasets import op_dataset
from SHOW.prior import build_prior
from SHOW.load_assets import load_assets
from SHOW.parse_weight import parse_weight
from SHOW.losses import *
from SHOW.utils import is_valid_json
from configs.cfg_ins import condor_cfg
from SHOW.datasets.model_func_atach import atach_model_func
@logger.catch
def SHOW_stage1(*args, **kwargs):
machine_info = SHOW.get_machine_info()
import pprint
pprint.pprint(f'machine_info: {machine_info}')
smplifyx_cfg = SHOW.utils.from_rela_path(
__file__, './configs/mmcv_smplifyx_config.py')
smplifyx_cfg.merge_from_dict(kwargs)
def update_betas_name_cfg():
smplifyx_cfg.save_betas_name = smplifyx_cfg.betas_ver_temp.format(
smplifyx_cfg.speaker_name)
if (Path(smplifyx_cfg.save_betas_name).exists()
and smplifyx_cfg.load_betas):
logger.info(f'loading betas')
smplifyx_cfg.merge_from_dict(smplifyx_cfg.betas_precompute)
else:
logger.info(f'not loading betas')
smplifyx_cfg.merge_from_dict(smplifyx_cfg.betas_generate)
if smplifyx_cfg.speaker_name == -1:
smplifyx_cfg.use_height_constraint = False
smplifyx_cfg.use_weight_constraint = False
smplifyx_cfg.merge_from_dict(condor_cfg)
if smplifyx_cfg.get('over_write_cfg', None):
logger.info(
f'over_write_cfg: {smplifyx_cfg.over_write_cfg.to_dict()}')
smplifyx_cfg.update(smplifyx_cfg.over_write_cfg)
update_betas_name_cfg()
mmcv.mkdir_or_exist(smplifyx_cfg.ours_output_folder)
mmcv.dump(dict(smplifyx_cfg),
osp.join(smplifyx_cfg.ours_output_folder, 'conf.yaml'))
setup_logger(smplifyx_cfg.ours_output_folder, mode='o')
dtype = SHOW.str_to_torch_dtype(smplifyx_cfg.dtype)
device = smplifyx_cfg.device
smplifyx_cfg.dtype = dtype
run_optimize_flag = False
if (not is_valid_json(smplifyx_cfg.final_losses_json_path)):
logger.warning('final_losses_json_path not valid')
run_optimize_flag = True
if (not Path(smplifyx_cfg.ours_pkl_file_path).exists()):
logger.warning('ours_pkl_file_path not exists')
run_optimize_flag = True
if smplifyx_cfg.get('force_run', None) and smplifyx_cfg.force_run:
run_optimize_flag = True
if smplifyx_cfg.get('pure_pre_data', None) and smplifyx_cfg.pure_pre_data:
logger.warning(f'pure_pre_data is True')
SHOW.purge_dir(smplifyx_cfg.keyp_folder)
SHOW.purge_dir(smplifyx_cfg.deca_mat_folder)
SHOW.purge_dir(smplifyx_cfg.pixie_mat_folder)
SHOW.purge_dir(smplifyx_cfg.fan_npy_folder)
SHOW.purge_dir(smplifyx_cfg.mp_npz_folder)
SHOW.purge_dir(smplifyx_cfg.pymaf_pkl_folder)
if not run_optimize_flag:
logger.warning('no need to optimize')
return False
with default_timers['load_dataset']:
face_ider = SHOW.build_ider(smplifyx_cfg.ider_cfg)
img_folder = smplifyx_cfg.img_folder
template_im = os.listdir(img_folder)[0]
template_im = os.path.join(img_folder, template_im)
body_model = load_smplx_model(dtype=dtype,
batch_size=1,
**smplifyx_cfg.smplx_cfg)
atach_model_func(body_model)
smplifyx_cfg.cvt_hand_func = lambda *args, **kwargs: body_model.hand_axis_to_pca(
body_model, *args, **kwargs)
smplifyx_cfg.merge_from_dict(smplifyx_cfg.smplx_cfg)
op = op_dataset(
config=smplifyx_cfg,
face_ider=face_ider,
person_face_emb=None,
batch_size=smplifyx_cfg.batch_size,
device=smplifyx_cfg.device,
dtype=smplifyx_cfg.dtype,
)
op.initialize()
assets = load_assets(
smplifyx_cfg,
face_ider=face_ider,
template_im=template_im,
)
if assets is None:
return
update_betas_name_cfg()
if assets.speaker_shape_vertices is None:
smplifyx_cfg.use_mica_shape = False
smplx2flame_idx = assets['smplx2flame_idx'].long()
face_mask = assets['FLAME_masks']['face']
speaker_shape_vertices = assets['speaker_shape_vertices']
lmk_faces_idx = assets['mp_lmk_emb']['lmk_face_idx']
lmk_bary_coords = assets['mp_lmk_emb']['lmk_b_coords']
mp_indices = assets['mp_lmk_emb']['landmark_indices']
opt_weights_list = parse_weight(smplifyx_cfg, device, dtype)
robustifier = GMoF(rho=100)
op.person_face_emb = assets.person_face_emb
ret = op.get_all()
betas = ret['init_data']['betas']
expression = ret['init_data']['exp']
jaw_pose = ret['init_data']['jaw']
right_hand_pose = ret['init_data']['rhand']
left_hand_pose = ret['init_data']['lhand']
pose = ret['init_data']['pose']
global_orient = ret['init_data']['global_orient']
cam_transl = ret['init_data']['cam_transl']
mica_head_transl = ret['init_data']['mica_head_transl']
leye_pose = ret['init_data']['leye_pose']
reye_pose = ret['init_data']['reye_pose']
transl = ret['init_data']['transl']
(op_kpts_org_data, mp_kpts, deca_kpts, op_valid_flag, mp_valid_flag,
deca_valid_flag, gt_seg) = ret['gt_data'].values()
if op_valid_flag.sum() == 0:
logger.warning(f'op_valid_flag is all False, skipping')
return False
update_betas_name_cfg()
logger.info(f'save_betas_name: {smplifyx_cfg.save_betas_name}')
if smplifyx_cfg.use_pre_compute_betas:
pre_betas = torch.from_numpy(np.load(smplifyx_cfg.save_betas_name))
if pre_betas.shape[-1] == smplifyx_cfg.smplx_cfg.num_betas:
betas.data.copy_(pre_betas)
else:
logger.warning(f'pre betas exist but shape error')
global_step = 0
wandb_log_dict = {}
losses_to_log = {}
op_j_weight = op.get_modify_jt_weight()
smplifyx_cfg.batch_size = batch_size = op.batch_size
height, width = op.height, op.width
center = [width / 2, height / 2]
mp_gt_lmk_2d = torch.index_select(
mp_kpts,
1, # mp_kpts:torch.Size([192, 478, 2]),
mp_indices.long().view(-1) # mp_indices:torch.Size([105])
).view(batch_size, -1, 2)
deca_kpts = deca_kpts[:, :17 + 51, :]
lmk_gt_outter = deca_kpts[:, :17, :]
lmk_gt_inner = deca_kpts[:, 17:, :]
# torch.Size([192, 105])
lmk_faces_idx = lmk_faces_idx \
.unsqueeze(dim=0).expand(batch_size, -1).contiguous().long()
lmk_bary_coords = lmk_bary_coords \
.unsqueeze(dim=0).repeat(batch_size, 1, 1).float()
op_gt_conf = (op_kpts_org_data[:, :, -1][..., None])
op_2dkpts = op_kpts_org_data[:, :, :2]
meter = MeterBuffer(window_size=6)
meter.reset()
pbar = tqdm(position=0,
leave=True,
bar_format="{percentage:3.0f}%|{bar}{r_bar}{desc}")
kpts = lmk_gt_outter[deca_valid_flag.bool(), :, :]
diff_kpts = kpts[1:, :, :] - kpts[:-1, :, :]
diff_kpts_dist = torch.sqrt(
torch.square(diff_kpts[:, :, 0]) +
torch.square(diff_kpts[:, :, 1]))
body_kpts_diff_sum = diff_kpts_dist.mean()
body_kpts_diff_sum_threshold = 0.5 # normal: 3.15; lmk_gt_outter
if body_kpts_diff_sum < body_kpts_diff_sum_threshold:
logger.warning(
f'body_kpts_diff_sum: {body_kpts_diff_sum} < {body_kpts_diff_sum_threshold}, skipping'
)
SHOW.purge_dir(smplifyx_cfg.ours_images_path)
SHOW.purge_dir(smplifyx_cfg.ours_pkl_file_path)
SHOW.purge_dir(smplifyx_cfg.final_losses_json_path)
SHOW.purge_dir(smplifyx_cfg.output_video_path)
SHOW.purge_dir(smplifyx_cfg.w_mica_merge_pkl)
SHOW.purge_dir(smplifyx_cfg.mica_all_dir)
return False
else:
logger.info(
f'body_kpts_diff_sum: {body_kpts_diff_sum} > {body_kpts_diff_sum_threshold}'
)
with default_timers['load_edt']:
search_tree = None
filter_faces = None
pen_distance = None
if smplifyx_cfg.use_bvh:
from mesh_intersection.bvh_search_tree import BVH
import mesh_intersection.loss as collisions_loss
from mesh_intersection.filter_faces import FilterFaces
search_tree = BVH(max_collisions=128)
pen_distance = collisions_loss.DistanceFieldPenetrationLoss(
sigma=0.5,
point2plane=False,
vectorized=True,
penalize_outside=True)
with open(smplifyx_cfg.part_segm_fn, 'rb') as f:
face_segm_data = pickle.load(f, encoding='latin1')
faces_segm = face_segm_data['segm']
faces_parents = face_segm_data['parents']
filter_faces = FilterFaces(faces_segm=faces_segm,
faces_parents=faces_parents,
ign_part_pairs=[
"9,16", "9,17", "6,16", "6,17",
"1,2", "12,22"
]).to(device=device)
edt = None
power = 0.25
kernel_size = 7
rasterizer_size = [height / 8, width / 8]
rasterizer_size = [int(i) for i in rasterizer_size]
pool = torch.nn.MaxPool2d(kernel_size=kernel_size,
stride=1,
padding=(kernel_size // 2))
def compute_edges(silhouette):
return pool(silhouette) - silhouette
if smplifyx_cfg.use_silhouette_loss:
gt_seg = torch.from_numpy(gt_seg)[None]
gt_seg = F.interpolate(gt_seg,
size=rasterizer_size,
mode='bilinear',
align_corners=False)
mask_edge = compute_edges(gt_seg).cpu().numpy()
edt = distance_transform_edt(1 - (mask_edge > 0))**(power * 2)
edt = torch.from_numpy(edt).to(device)
logger.info(f'compute edt finished')
with default_timers['load_models']:
body_model = load_smplx_model(dtype=dtype,
batch_size=batch_size,
**smplifyx_cfg.smplx_cfg)
atach_model_func(body_model)
vposer = load_vposer_model(device, smplifyx_cfg.vposer_ckpt)
angle_prior = build_prior(dict(type='SMPLifyAnglePrior',
dtype=dtype)).to(device)
if betas.shape[-1] > smplifyx_cfg.smplx_cfg.num_betas:
betas = betas[..., :smplifyx_cfg.smplx_cfg.num_betas]
if expression.shape[-1] > smplifyx_cfg.smplx_cfg.num_expression_coeffs:
expression = expression[
..., :smplifyx_cfg.smplx_cfg.num_expression_coeffs]
body_params = dict(
expression=expression,
jaw_pose=jaw_pose,
betas=betas,
global_orient=global_orient,
transl=transl,
left_hand_pose=left_hand_pose,
right_hand_pose=right_hand_pose,
leye_pose=leye_pose,
reye_pose=reye_pose,
pose_embedding=vposer.encode(pose.reshape(batch_size, -1)).mean,
mica_head_transl=mica_head_transl,
)
if (smplifyx_cfg.load_checkpoint
and not Path(smplifyx_cfg.checkpoint_pkl_path).exists()):
logger.warning(
f'load_checkpoint is True but checkpoint_pkl_path not exist')
if (smplifyx_cfg.load_checkpoint
and Path(smplifyx_cfg.checkpoint_pkl_path).exists()
and is_valid_json(smplifyx_cfg.checkpoint_json_path)):
logger.warning(
f'load_checkpoint: {smplifyx_cfg.checkpoint_pkl_path}')
load_body_params = load_save_pkl(smplifyx_cfg.checkpoint_pkl_path)
body_params.update(({
key: load_body_params[key]
for key in smplifyx_cfg.basic_param_keys
}))
logger.warning(
f'load_checkpoint and jump to stage {smplifyx_cfg.load_ckpt_st_stage} {smplifyx_cfg.load_ckpt_ed_stage}'
)
smplifyx_cfg.start_stage = smplifyx_cfg.load_ckpt_st_stage
smplifyx_cfg.end_stage = smplifyx_cfg.load_ckpt_ed_stage
if smplifyx_cfg.re_optim_hands:
logger.info(f'reload hands from PIXIE/PyMAF-X')
body_params['left_hand_pose'] = left_hand_pose
body_params['right_hand_pose'] = right_hand_pose
body_params = cvt_dict_to_grad(body_params, device, dtype)
tpose_vertices = get_tpose_vertice(body_model, body_params['betas'])
body_params['mica_head_transl'].data.copy_(
cal_smplx_head_transl(tpose_vertices, smplx2flame_idx))
cam_params = {'focal': op.focal, 'cam_t': op.get_smplx_to_o3d_T()}
cam_params = cvt_dict_to_grad(cam_params, device, dtype)
cam_params['focal'].requires_grad = False
camera_org = PerspectiveCameras(
device=device,
focal_length=cam_params['focal'].unsqueeze(0),
T=cam_params['cam_t'].unsqueeze(0),
R=torch.Tensor([op.get_smplx_to_o3d_R()]),
image_size=torch.Tensor([[height, width]]),
principal_point=torch.Tensor([[width / 2, height / 2]]),
in_ndc=False)
sigma = 1e-4
raster_settings_soft = RasterizationSettings(
image_size=rasterizer_size,
blur_radius=np.log(1. / 1e-4 - 1.) * sigma,
faces_per_pixel=50,
bin_size=0,
)
# Silhouette renderer
renderer_silhouette = MeshRenderer(rasterizer=MeshRasterizer(
cameras=camera_org, raster_settings=raster_settings_soft),
shader=SoftSilhouetteShader())
sil_cnt = 0
with default_timers['run_optimize']:
opt_weights_list = opt_weights_list[smplifyx_cfg.
start_stage:smplifyx_cfg.end_stage]
for stage, curr_weights in enumerate(opt_weights_list):
if (Path(smplifyx_cfg.checkpoint_pkl_path).exists()
and smplifyx_cfg.check_pkl_metric
and smplifyx_cfg.load_checkpoint):
logger.info('jump to stage -1')
curr_weights = opt_weights_list[-1]
stage = 2
curr_weights = EasyDict(curr_weights)
meter.reset()
prev_loss = None
logger.info(f'stage: {stage}')
for key in body_params.keys():
body_params[key].requires_grad = bool(
curr_weights[f'{key}_en'])
logger.info(f'{key}:{body_params[key].requires_grad}')
if smplifyx_cfg.use_pre_compute_betas:
body_params['betas'].requires_grad = False
final_params = list(
filter(lambda x: x.requires_grad, body_params.values()))
optimizer = SHOW.build_optim(
dict(params=final_params, **smplifyx_cfg.optimizer_config))
optimizer.zero_grad()
def loss_closure_finish_callback(losses, metric):
nonlocal global_step
nonlocal wandb_log_dict
nonlocal losses_to_log
global_step += 1
losses_to_log = dict(**losses, **metric)
log_str = SHOW.utils.print_dict_losses(losses_to_log)
if (smplifyx_cfg.get('loggers', None)
and smplifyx_cfg.get('wandb_prefix', None)):
wandb_log_dict = {
f'{smplifyx_cfg.wandb_prefix}/{k}': v.item()
for k, v in losses_to_log.items()
}
smplifyx_cfg.loggers.log_bs(wandb_log_dict)
else:
# logger.info(f'{stage}_{global_step}:{log_str}')
pbar.set_description(log_str)
pbar.update(1)
meta_data = dict(step=0, pred_edge=None)
closure = create_closure(
optimizer,
vposer,
body_model,
body_params,
camera_org,
lmk_faces_idx,
lmk_bary_coords,
op_2dkpts,
op_j_weight,
op_gt_conf,
op_valid_flag,
robustifier,
curr_weights,
batch_size,
lmk_gt_inner,
lmk_gt_outter,
mp_valid_flag,
mp_gt_lmk_2d,
smplifyx_cfg,
deca_valid_flag,
height,
width,
speaker_shape_vertices,
smplx2flame_idx,
face_mask,
angle_prior,
device,
loss_closure_finish_callback,
renderer_silhouette,
edt,
compute_edges,
meta_data=meta_data,
search_tree=search_tree,
filter_faces=filter_faces,
pen_distance=pen_distance,
)
if (Path(smplifyx_cfg.checkpoint_pkl_path).exists()
and smplifyx_cfg.load_checkpoint
and smplifyx_cfg.check_pkl_metric):
logger.warning(
'pkl exist and we only check th loss the metric,break stages loop'
)
all_loss = closure()
break
for n in range(smplifyx_cfg.maxiters):
all_loss = optimizer.step(closure)
if n > 1 and prev_loss is not None:
loss_rel_change = SHOW.utils.rel_change(
prev_loss, all_loss.item())
meter.update({'rel': loss_rel_change})
if meter['rel'].avg <= 1e-09:
logger.warning('rel exit')
break
if all([
torch.abs(var.grad.view(-1).max()).item() < 1e-06
for var in final_params if var.grad is not None
]):
logger.warning('small grad')
break
if (smplifyx_cfg.use_silhouette_loss
and curr_weights.wl_silhouette != 0):
sil_cnt += 1
if sil_cnt > 3:
break
prev_loss = all_loss.item()
with default_timers['final_output']:
scalar_dict = {k: v.item() for k, v in losses_to_log.items()}
logger.info(
f'saving final_losses_json_path: {smplifyx_cfg.final_losses_json_path}'
)
mmcv.dump(scalar_dict, smplifyx_cfg.final_losses_json_path)
if not SHOW.is_valid_json(smplifyx_cfg.final_losses_json_path):
logger.warning(f"is_valid_json, not save, return")
return False
model_output, body_pose_axis = cal_model_output(
vposer, body_model, body_params)
vertices_ = model_output.vertices.detach().cpu().numpy()
if smplifyx_cfg.save_template:
obj_file_path = smplifyx_cfg.ours_output_folder + '/template.obj'
logger.info(f'saving template obj: {obj_file_path}')
tpose_vertices = get_tpose_vertice(body_model,
body_params['betas'])
out_mesh = trimesh.Trimesh(tpose_vertices.detach().cpu().numpy(),
body_model.faces,
process=False)
out_mesh.export(obj_file_path)
if (not Path(smplifyx_cfg.save_betas_name).exists()
and smplifyx_cfg.save_betas):
logger.info(f'saving betas npy: {smplifyx_cfg.save_betas_name}')
Path(smplifyx_cfg.save_betas_name).parent.mkdir(parents=True,
exist_ok=True)
np.save(smplifyx_cfg.save_betas_name,
body_params['betas'].detach().cpu().numpy())
final_log_str = SHOW.utils.print_dict_losses(losses_to_log)
logger.info(f'final_log_str:{final_log_str}')
if (smplifyx_cfg.get('loggers', None)
and smplifyx_cfg.get('wandb_prefix', None)):
logger.info(f'logging final metric to server')
final_metric = {
f'final_metric/{k}': v
for k, v in wandb_log_dict.items()
}
smplifyx_cfg.loggers.log_bs(final_metric, append=False)
if (smplifyx_cfg.save_pkl_file or run_optimize_flag):
logger.info(
f'saving ours_pkl_file_path: {smplifyx_cfg.ours_pkl_file_path}'
)
mmcv.dump([{
'losses_to_log':
losses_to_log,
'width':
width,
'height':
height,
'center':
center,
'batch_size':
batch_size,
'camera_transl':
cam_params['cam_t'].detach().cpu().numpy(),
'focal_length':
cam_params['focal'].detach().cpu().numpy(),
**SHOW.tensor2numpy(body_params),
'body_pose_axis':
body_pose_axis.detach().cpu().numpy(),
'speaker_name':
smplifyx_cfg.speaker_name,
}], smplifyx_cfg.ours_pkl_file_path)
if (smplifyx_cfg.save_ours_images
or (SHOW.img_files_num_in_dir(smplifyx_cfg.ours_images_path) <
SHOW.img_files_num_in_dir(smplifyx_cfg.img_folder))
or run_optimize_flag):
logger.info(
f'saving final images to: {smplifyx_cfg.ours_images_path}')
from pkl2img import render_pkl_api
render_pkl_api(**smplifyx_cfg)