-
Notifications
You must be signed in to change notification settings - Fork 52
/
ste.py
39 lines (27 loc) · 1.1 KB
/
ste.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
__author__ = 'yihanjiang'
import torch
# STE implementation
class STEQuantize(torch.autograd.Function):
#self.args.fb_quantize_limit, self.args.fb_quantize_level
@staticmethod
def forward(ctx, inputs, quant_limit, quant_level):
ctx.save_for_backward(inputs)
x_lim_abs = quant_limit
x_lim_range = 2.0 * x_lim_abs
x_input_norm = torch.clamp(inputs, -x_lim_abs, x_lim_abs)
if quant_level == 2:
outputs_int = torch.sign(x_input_norm)
else:
outputs_int = torch.round((x_input_norm +x_lim_abs) * ((quant_level - 1.0)/x_lim_range)) * x_lim_range/(quant_level - 1.0) - x_lim_abs
return outputs_int
@staticmethod
def backward(ctx, grad_output):
input, = ctx.saved_tensors
# let's see what happens....
# grad_output[torch.abs(input)>1.5]=0
# grad_output[torch.abs(input)<0.5]=0
grad_output[input>1.0]=0
grad_output[input<-1.0]=0
grad_output = torch.clamp(grad_output, -0.25, +0.25)
grad_input = grad_output.clone()
return grad_input, None, None, None