This implementation is based on UDA_PoseEstimation.
- train on the source domain;
- Construct the proxy source domain and train on target dataset.
- Please put the hand datasets H3D and RHD under the folder './hand_data/', put the human datasets LSP and SURREAL under the folder './human_data'
-
# train source model python hand_src.py # train target model python hand_tgt_proxy.py
-
# train source model python human_src.py # train target model python human_tgt_proxy.py
If you find this code useful for your research, please cite our paper
@article{ding2023maps,
title={MAPS: A Noise-Robust Progressive Learning Approach for Source-Free Domain Adaptive Keypoint Detection},
author={Ding, Yuhe and Liang, Jian and Jiang, Bo and Zheng, Aihua and He, Ran},
journal={arXiv preprint arXiv:2302.04589},
year={2023}
}