Experiment code of the paper "Don't Drop the Topic - The Role of the Prompt in Argument Identification in Student Writing" accepted by BEA-NAACL-2022.
-
Download data from: https://www.kaggle.com/c/feedback-prize-2021/ and save data to './data'
-
Install environment
conda create --name env python=3.7 conda activate env pip install -r experiment_requirements.txt
-
Split data into clusters and different experiment settings
python ./data_split.py
-
Training model with different settings for 15 prompts. For example, the same_prompt setting will be trained by:
for PROMPT in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 do python ./experiment_pipeline.py --train_prompt ${PROMPT} --validate_prompt ${PROMPT} --test_prompt ${PROMPT} --input ./data/same_prompt --model allenai/longformer-large-4096 --lr 1e-5 --output ./output --max_len 1536 --epochs 10 done
@inproceedings{ding-etal-2022-dont,
title = "Don{'}t Drop the Topic - The Role of the Prompt in Argument Identification in Student Writing",
author = "Ding, Yuning and
Bexte, Marie and
Horbach, Andrea",
booktitle = "Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.bea-1.17",
doi = "10.18653/v1/2022.bea-1.17",
pages = "124--133",
}