Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

stacking中基模型fit时自定义fit参数 #2

Open
pjgao opened this issue Aug 14, 2019 · 3 comments
Open

stacking中基模型fit时自定义fit参数 #2

pjgao opened this issue Aug 14, 2019 · 3 comments

Comments

@pjgao
Copy link

pjgao commented Aug 14, 2019

比如xgb/lgb early stoping参数

@yzhao062
Copy link
Owner

理论上stacking这里的input应该是你已经define好的classifiers,举个例子:

clf1 = XGBClassifier(max_depth=3, learning_rate=0.1)
clf2 = XGBClassifier(max_depth=5, learning_rate=0.05)

clfs = [clf1, clf2]
clf_meta = Stacking(clfs)

不知道这个是不是你想问的问题

@pjgao
Copy link
Author

pjgao commented Aug 14, 2019

这样来说也是,early stopping是不必要,不过像ligthgbm/catboost的categorical_feature特征应该是要用的吧,cat/lgb对cat特征的处理有的时候是优于一般的label encoder处理的

@zwh9437
Copy link

zwh9437 commented Aug 9, 2021

这样来说也是,early stopping是不必要,不过像ligthgbm/catboost的categorical_feature特征应该是要用的吧,cat/lgb对cat特征的处理有的时候是优于一般的label encoder处理的

大佬最后有解决吗?就是有的函数fit里面有其他参数的时候,可以用吗?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants