forked from influxdata/influxdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compact.go
963 lines (812 loc) · 24.7 KB
/
compact.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
package tsm1
// Compactions are the process of creating read-optimized TSM files.
// The files are created by converting write-optimized WAL entries
// to read-optimized TSM format. They can also be created from existing
// TSM files when there are tombstone records that neeed to be removed, points
// that were overwritten by later writes and need to updated, or multiple
// smaller TSM files need to be merged to reduce file counts and improve
// compression ratios.
//
// The the compaction process is stream-oriented using multiple readers and
// iterators. The resulting stream is written sorted and chunked to allow for
// one-pass writing of a new TSM file.
import (
"fmt"
"math"
"os"
"path/filepath"
"sort"
"time"
"github.com/influxdata/influxdb/tsdb"
)
const maxTSMFileSize = uint32(2048 * 1024 * 1024) // 2GB
const (
CompactionTempExtension = "tmp"
TSMFileExtension = "tsm"
)
var errMaxFileExceeded = fmt.Errorf("max file exceeded")
var (
MaxTime = time.Unix(0, math.MaxInt64)
MinTime = time.Unix(0, 0)
)
type CompactionGroup []string
// CompactionPlanner determines what TSM files and WAL segments to include in a
// given compaction run.
type CompactionPlanner interface {
Plan(lastWrite time.Time) []CompactionGroup
PlanLevel(level int) []CompactionGroup
}
// DefaultPlanner implements CompactionPlanner using a strategy to roll up
// multiple generations of TSM files into larger files in stages. It attempts
// to minimize the number of TSM files on disk while rolling up a bounder number
// of files.
type DefaultPlanner struct {
FileStore interface {
Stats() []FileStat
LastModified() time.Time
BlockCount(path string, idx int) int
}
// CompactFullWriteColdDuration specifies the length of time after
// which if no writes have been committed to the WAL, the engine will
// do a full compaction of the TSM files in this shard. This duration
// should always be greater than the CacheFlushWriteColdDuraion
CompactFullWriteColdDuration time.Duration
// lastPlanCompactedFull will be true if the last time
// Plan was called, all files were over the max size
// or there was only one file
lastPlanCompactedFull bool
// lastPlanCheck is the last time Plan was called
lastPlanCheck time.Time
}
// tsmGeneration represents the TSM files within a generation.
// 000001-01.tsm, 000001-02.tsm would be in the same generation
// 000001 each with different sequence numbers.
type tsmGeneration struct {
id int
files []FileStat
}
// size returns the total size of the generation
func (t *tsmGeneration) size() uint64 {
var n uint64
for _, f := range t.files {
n += uint64(f.Size)
}
return n
}
// compactionLevel returns the level of the files in this generation
func (t *tsmGeneration) level() int {
// Level 0 is always created from the result of a cache compaction. It generates
// 1 file with a sequence num of 1. Level 2 is generated by compacting multiple
// level 1 files. Level 3 is generate by compacting multiple level 2 files. Level
// 4 is for anything else.
if len(t.files) == 1 {
_, seq, _ := ParseTSMFileName(t.files[0].Path)
if seq < 4 {
return seq
}
}
return 4
}
func (t *tsmGeneration) lastModified() time.Time {
var max time.Time
for _, f := range t.files {
if f.LastModified.After(max) {
max = f.LastModified
}
}
return max
}
// count return then number of files in the generation
func (t *tsmGeneration) count() int {
return len(t.files)
}
// hasTombstones returns true if there a keys removed for any of the files
func (t *tsmGeneration) hasTombstones() bool {
for _, f := range t.files {
if f.HasTombstone {
return true
}
}
return false
}
// PlanLevel returns a set of TSM files to rewrite for a specific level
func (c *DefaultPlanner) PlanLevel(level int) []CompactionGroup {
// Determine the generations from all files on disk. We need to treat
// a generation conceptually as a single file even though it may be
// split across several files in sequence.
generations := c.findGenerations()
if len(generations) <= 1 && !generations.hasTombstones() {
return nil
}
// Loop through the generations and find the generations matching the requested
// level
var cGroup CompactionGroup
for i := 0; i < len(generations)-1; i++ {
cur := generations[i]
next := generations[i+1]
// If the current and next level match the specified level, then add the current level
// to the group
if level == cur.level() && (next.level() == level || cur.hasTombstones()) {
for _, f := range cur.files {
cGroup = append(cGroup, f.Path)
}
continue
}
}
// Add the last segments if it matches the level
if len(generations) > 0 {
last := generations[len(generations)-1]
if last.level() == level {
for _, f := range last.files {
cGroup = append(cGroup, f.Path)
}
}
}
if len(cGroup) == 0 {
return nil
}
if generations.hasTombstones() {
return []CompactionGroup{cGroup}
}
// Ensure we have at least 2 generations. For higher levels, we want to use more files to maximize
// the compression, but we don't want it unbounded since that can cause backups of compactions at that
// level.
// Level 1 -> 2
// Level 2 -> 2
// Level 3 -> 4
// Level 4 -> 4
limit := 2
if level%2 != 0 {
limit = level + 1
}
if len(cGroup) < limit {
return nil
}
return []CompactionGroup{cGroup[:limit]}
}
// Plan returns a set of TSM files to rewrite for level 4 or higher. The planning returns
// multiple groups if possible to allow compactions to run concurrently.
func (c *DefaultPlanner) Plan(lastWrite time.Time) []CompactionGroup {
generations := c.findGenerations()
// first check if we should be doing a full compaction because nothing has been written in a long time
if !c.lastPlanCompactedFull && c.CompactFullWriteColdDuration > 0 && time.Now().Sub(lastWrite) > c.CompactFullWriteColdDuration && len(generations) > 1 {
var tsmFiles []string
for i, group := range generations {
var skip bool
// Skip the file if it's over the max size and contains a full block and it does not have any tombstones
if group.size() > uint64(maxTSMFileSize) && c.FileStore.BlockCount(group.files[0].Path, 1) == tsdb.DefaultMaxPointsPerBlock && !group.hasTombstones() {
skip = true
}
// We need to look at the level of the next file because it may need to be combined with this generation
// but won't get picked up on it's own if this generation is skipped. This allows the most recently
// created files to get picked up by the full compaction planner and avoids having a few less optimally
// compressed files.
if i < len(generations)-1 {
if generations[i+1].level() <= 3 {
skip = false
}
}
if skip {
continue
}
for _, f := range group.files {
tsmFiles = append(tsmFiles, f.Path)
}
}
sort.Strings(tsmFiles)
c.lastPlanCompactedFull = true
if len(tsmFiles) <= 1 {
return nil
}
return []CompactionGroup{tsmFiles}
}
// don't plan if nothing has changed in the filestore
if c.lastPlanCheck.After(c.FileStore.LastModified()) && !generations.hasTombstones() {
return nil
}
c.lastPlanCheck = time.Now()
// If there is only one generation, return early to avoid re-compacting the same file
// over and over again.
if len(generations) <= 1 && !generations.hasTombstones() {
return nil
}
// Need to find the ending point for level 4 files. They will be the oldest files. We scan
// each generation in descending break once we see a file less than 4.
end := 0
start := 0
for i, g := range generations {
if g.level() <= 3 {
break
}
end = i + 1
}
// As compactions run, the oldest files get bigger. We don't want to re-compact them during
// this planning if they are maxed out so skip over any we see.
var hasTombstones bool
for i, g := range generations[:end] {
if g.hasTombstones() {
hasTombstones = true
}
if hasTombstones {
continue
}
// Skip the file if it's over the max size and contains a full block
if g.size() > uint64(maxTSMFileSize) && c.FileStore.BlockCount(g.files[0].Path, 1) == tsdb.DefaultMaxPointsPerBlock {
start = i + 1
}
// This is an edge case that can happen after multiple compactions run. The files at the beginning
// can become larger faster than ones after them. We want to skip those really big ones and just
// compact the smaller ones until they are closer in size.
if i > 0 {
if g.size()*2 < generations[i-1].size() {
start = i
break
}
}
}
// step is how may files to compact in a group. We want to clamp it at 4 but also stil
// return groups smaller than 4.
step := 4
if step > end {
step = end
}
// slice off the generations that we'll examine
generations = generations[start:end]
// Loop through the generations in groups of size step and see if we can compact all (or
// some of them as group)
groups := []tsmGenerations{}
for i := 0; i < len(generations); i += step {
var skipGroup bool
startIndex := i
for j := i; j < i+step && j < len(generations); j++ {
gen := generations[j]
lvl := gen.level()
// Skip compacting this group if there happens to be any lower level files in the
// middle. These will get picked up by the level compactors.
if lvl <= 3 {
skipGroup = true
break
}
// Skip the file if it's over the max size and it contains a full block
if gen.size() >= uint64(maxTSMFileSize) && c.FileStore.BlockCount(gen.files[0].Path, 1) == tsdb.DefaultMaxPointsPerBlock && !gen.hasTombstones() {
startIndex++
continue
}
}
if skipGroup {
continue
}
endIndex := i + step
if endIndex > len(generations) {
endIndex = len(generations)
}
if endIndex-startIndex > 0 {
groups = append(groups, generations[startIndex:endIndex])
}
}
if len(groups) == 0 {
return nil
}
// With the groups, we need to evaluate whether the group as a whole can be compacted
compactable := []tsmGenerations{}
for _, group := range groups {
//if we don't have enough generations to compact, skip it
if len(group) < 2 && !group.hasTombstones() {
continue
}
compactable = append(compactable, group)
}
// All the files to be compacted must be compacted in order. We need to convert each
// group to the actual set of files in that group to be compacted.
var tsmFiles []CompactionGroup
for _, c := range compactable {
var cGroup CompactionGroup
for _, group := range c {
for _, f := range group.files {
cGroup = append(cGroup, f.Path)
}
}
sort.Strings(cGroup)
tsmFiles = append(tsmFiles, cGroup)
}
c.lastPlanCompactedFull = false
return tsmFiles
}
// findGenerations groups all the TSM files by they generation based
// on their filename then returns the generations in descending order (newest first)
func (c *DefaultPlanner) findGenerations() tsmGenerations {
generations := map[int]*tsmGeneration{}
tsmStats := c.FileStore.Stats()
for _, f := range tsmStats {
gen, _, _ := ParseTSMFileName(f.Path)
group := generations[gen]
if group == nil {
group = &tsmGeneration{
id: gen,
}
generations[gen] = group
}
group.files = append(group.files, f)
}
orderedGenerations := make(tsmGenerations, 0, len(generations))
for _, g := range generations {
orderedGenerations = append(orderedGenerations, g)
}
sort.Sort(orderedGenerations)
return orderedGenerations
}
// Compactor merges multiple TSM files into new files or
// writes a Cache into 1 or more TSM files
type Compactor struct {
Dir string
Cancel chan struct{}
Size int
FileStore interface {
NextGeneration() int
}
}
// WriteSnapshot will write a Cache snapshot to a new TSM files.
func (c *Compactor) WriteSnapshot(cache *Cache) ([]string, error) {
iter := NewCacheKeyIterator(cache, tsdb.DefaultMaxPointsPerBlock)
return c.writeNewFiles(c.FileStore.NextGeneration(), 0, iter)
}
// Compact will write multiple smaller TSM files into 1 or more larger files
func (c *Compactor) compact(fast bool, tsmFiles []string) ([]string, error) {
size := c.Size
if size <= 0 {
size = tsdb.DefaultMaxPointsPerBlock
}
// The new compacted files need to added to the max generation in the
// set. We need to find that max generation as well as the max sequence
// number to ensure we write to the next unique location.
var maxGeneration, maxSequence int
for _, f := range tsmFiles {
gen, seq, err := ParseTSMFileName(f)
if err != nil {
return nil, err
}
if gen > maxGeneration {
maxGeneration = gen
maxSequence = seq
}
if gen == maxGeneration && seq > maxSequence {
maxSequence = seq
}
}
// For each TSM file, create a TSM reader
var trs []*TSMReader
for _, file := range tsmFiles {
f, err := os.Open(file)
if err != nil {
return nil, err
}
tr, err := NewTSMReaderWithOptions(
TSMReaderOptions{
MMAPFile: f,
})
if err != nil {
return nil, err
}
defer tr.Close()
trs = append(trs, tr)
}
if len(trs) == 0 {
return nil, nil
}
tsm, err := NewTSMKeyIterator(size, fast, trs...)
if err != nil {
return nil, err
}
return c.writeNewFiles(maxGeneration, maxSequence, tsm)
}
// Compact will write multiple smaller TSM files into 1 or more larger files
func (c *Compactor) CompactFull(tsmFiles []string) ([]string, error) {
return c.compact(false, tsmFiles)
}
// Compact will write multiple smaller TSM files into 1 or more larger files
func (c *Compactor) CompactFast(tsmFiles []string) ([]string, error) {
return c.compact(true, tsmFiles)
}
// Clone will return a new compactor that can be used even if the engine is closed
func (c *Compactor) Clone() *Compactor {
return &Compactor{
Dir: c.Dir,
FileStore: c.FileStore,
Cancel: c.Cancel,
}
}
// writeNewFiles will write from the iterator into new TSM files, rotating
// to a new file when we've reached the max TSM file size
func (c *Compactor) writeNewFiles(generation, sequence int, iter KeyIterator) ([]string, error) {
// These are the new TSM files written
var files []string
for {
sequence++
// New TSM files are written to a temp file and renamed when fully completed.
fileName := filepath.Join(c.Dir, fmt.Sprintf("%09d-%09d.%s.tmp", generation, sequence, TSMFileExtension))
// Write as much as possible to this file
err := c.write(fileName, iter)
// We've hit the max file limit and there is more to write. Create a new file
// and continue.
if err == errMaxFileExceeded {
files = append(files, fileName)
continue
} else if err == ErrNoValues {
// If the file only contained tombstoned entries, then it would be a 0 length
// file that we can drop.
if err := os.RemoveAll(fileName); err != nil {
return nil, err
}
break
}
// We hit an error but didn't finish the compaction. Remove the temp file and abort.
if err != nil {
if err := os.Remove(fileName); err != nil {
return nil, err
}
return nil, err
}
files = append(files, fileName)
break
}
return files, nil
}
func (c *Compactor) write(path string, iter KeyIterator) error {
if _, err := os.Stat(path); !os.IsNotExist(err) {
return fmt.Errorf("%v already file exists. aborting", path)
}
fd, err := os.OpenFile(path, os.O_CREATE|os.O_RDWR, 0666)
if err != nil {
return err
}
// Create the write for the new TSM file.
w, err := NewTSMWriter(fd)
if err != nil {
return err
}
defer w.Close()
for iter.Next() {
select {
case <-c.Cancel:
return fmt.Errorf("compaction aborted")
default:
}
// Each call to read returns the next sorted key (or the prior one if there are
// more values to write). The size of values will be less than or equal to our
// chunk size (1000)
key, minTime, maxTime, block, err := iter.Read()
if err != nil {
return err
}
// Write the key and value
if err := w.WriteBlock(key, minTime, maxTime, block); err != nil {
return err
}
// If we have a max file size configured and we're over it, close out the file
// and return the error.
if w.Size() > maxTSMFileSize {
if err := w.WriteIndex(); err != nil {
return err
}
return errMaxFileExceeded
}
}
// We're all done. Close out the file.
if err := w.WriteIndex(); err != nil {
return err
}
return nil
}
// KeyIterator allows iteration over set of keys and values in sorted order.
type KeyIterator interface {
Next() bool
Read() (string, time.Time, time.Time, []byte, error)
Close() error
}
// tsmKeyIterator implements the KeyIterator for set of TSMReaders. Iteration produces
// keys in sorted order and the values between the keys sorted and deduped. If any of
// the readers have associated tombstone entries, they are returned as part of iteration.
type tsmKeyIterator struct {
// readers is the set of readers it produce a sorted key run with
readers []*TSMReader
// values is the temporary buffers for each key that is returned by a reader
values map[string][]Value
// pos is the current key postion within the corresponding readers slice. A value of
// pos[0] = 1, means the reader[0] is currently at key 1 in its ordered index.
pos []int
keys []string
// err is any error we received while iterating values.
err error
// indicates whether the iterator should choose a faster merging strategy over a more
// optimally compressed one. If fast is true, multiple blocks will just be added as is
// and not combined. In some cases, a slower path will need to be utilized even when
// fast is true to prevent overlapping blocks of time for the same key.
// If false, the blocks will be decoded and duplicated (if needed) and
// then chunked into the maximally sized blocks.
fast bool
// size is the maximum number of values to encode in a single block
size int
// key is the current key lowest key across all readers that has not be fully exhausted
// of values.
key string
iterators []*BlockIterator
blocks blocks
buf []blocks
}
type block struct {
key string
minTime, maxTime time.Time
b []byte
}
type blocks []*block
func (a blocks) Len() int { return len(a) }
func (a blocks) Less(i, j int) bool {
if a[i].key == a[j].key {
return a[i].minTime.Before(a[j].minTime)
}
return a[i].key < a[j].key
}
func (a blocks) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func NewTSMKeyIterator(size int, fast bool, readers ...*TSMReader) (KeyIterator, error) {
var iter []*BlockIterator
for _, r := range readers {
iter = append(iter, r.BlockIterator())
}
return &tsmKeyIterator{
readers: readers,
values: map[string][]Value{},
pos: make([]int, len(readers)),
keys: make([]string, len(readers)),
size: size,
iterators: iter,
fast: fast,
buf: make([]blocks, len(iter)),
}, nil
}
func (k *tsmKeyIterator) Next() bool {
// If we still have blocks from the last read, slice off the current one
// and return
if len(k.blocks) > 0 {
k.blocks = k.blocks[1:]
if len(k.blocks) > 0 {
return true
}
}
// Read the next block from each TSM iterator
for i, v := range k.buf {
if v == nil {
iter := k.iterators[i]
if iter.Next() {
key, minTime, maxTime, b, err := iter.Read()
if err != nil {
k.err = err
}
k.buf[i] = append(k.buf[i], &block{
minTime: minTime,
maxTime: maxTime,
key: key,
b: b,
})
blockKey := key
for iter.PeekNext() == blockKey {
iter.Next()
key, minTime, maxTime, b, err := iter.Read()
if err != nil {
k.err = err
}
k.buf[i] = append(k.buf[i], &block{
minTime: minTime,
maxTime: maxTime,
key: key,
b: b,
})
}
}
}
}
// Each reader could have a different key that it's currently at, need to find
// the next smallest one to keep the sort ordering.
var minKey string
for _, b := range k.buf {
// block could be nil if the iterator has been exhausted for that file
if len(b) == 0 {
continue
}
if minKey == "" || b[0].key < minKey {
minKey = b[0].key
}
}
// Now we need to find all blocks that match the min key so we can combine and dedupe
// the blocks if necessary
for i, b := range k.buf {
if len(b) == 0 {
continue
}
if b[0].key == minKey {
k.blocks = append(k.blocks, b...)
k.buf[i] = nil
}
}
// If we have more than one block, we many need to dedup
var dedup bool
// Only one block, just return early everything after is wasted work
if len(k.blocks) == 1 {
return true
}
if len(k.blocks) > 1 {
// Quickly scan each block to see if any overlap with the first block, if they overlap then
// we need to dedup as there may be duplicate points now
for i := 1; i < len(k.blocks); i++ {
if k.blocks[i].minTime.Equal(k.blocks[i-1].maxTime) || k.blocks[i].minTime.Before(k.blocks[i-1].maxTime) {
dedup = true
break
}
}
}
k.blocks = k.combine(dedup)
return len(k.blocks) > 0
}
// combine returns a new set of blocks using the current blocks in the buffers. If dedup
// is true, all the blocks will be decoded, dedup and sorted in in order. If dedup is false,
// only blocks that are smaller than the chunk size will be decoded and combined.
func (k *tsmKeyIterator) combine(dedup bool) blocks {
var decoded Values
if dedup {
// We have some overlapping blocks so decode all, append in order and then dedup
for i := 0; i < len(k.blocks); i++ {
v, err := DecodeBlock(k.blocks[i].b, nil)
if err != nil {
k.err = err
return nil
}
decoded = append(decoded, v...)
}
decoded = decoded.Deduplicate()
// Since we combined multiple blocks, we could have more values than we should put into
// a single block. We need to chunk them up into groups and re-encode them.
return k.chunk(nil, decoded)
} else {
var chunked blocks
var i int
for i < len(k.blocks) {
// If we this block is already full, just add it as is
if BlockCount(k.blocks[i].b) >= k.size {
chunked = append(chunked, k.blocks[i])
} else {
break
}
i++
}
if k.fast {
for i < len(k.blocks) {
chunked = append(chunked, k.blocks[i])
i++
}
}
// If we only have 1 blocks left, just append it as is and avoid decoding/recoding
if i == len(k.blocks)-1 {
chunked = append(chunked, k.blocks[i])
i++
}
// The remaining blocks can be combined and we know that they do not overlap and
// so we can just append each, sort and re-encode.
for i < len(k.blocks) {
v, err := DecodeBlock(k.blocks[i].b, nil)
if err != nil {
k.err = err
return nil
}
decoded = append(decoded, v...)
i++
}
sort.Sort(Values(decoded))
return k.chunk(chunked, decoded)
}
}
func (k *tsmKeyIterator) chunk(dst blocks, values []Value) blocks {
for len(values) > k.size {
cb, err := Values(values[:k.size]).Encode(nil)
if err != nil {
k.err = err
return nil
}
dst = append(dst, &block{
minTime: values[0].Time(),
maxTime: values[k.size-1].Time(),
key: k.blocks[0].key,
b: cb,
})
values = values[k.size:]
}
// Re-encode the remaining values into the last block
if len(values) > 0 {
cb, err := Values(values).Encode(nil)
if err != nil {
k.err = err
return nil
}
dst = append(dst, &block{
minTime: values[0].Time(),
maxTime: values[len(values)-1].Time(),
key: k.blocks[0].key,
b: cb,
})
}
return dst
}
func (k *tsmKeyIterator) Read() (string, time.Time, time.Time, []byte, error) {
if len(k.blocks) == 0 {
return "", time.Unix(0, 0), time.Unix(0, 0), nil, k.err
}
block := k.blocks[0]
return block.key, block.minTime, block.maxTime, block.b, k.err
}
func (k *tsmKeyIterator) Close() error {
k.values = nil
k.pos = nil
k.iterators = nil
for _, r := range k.readers {
if err := r.Close(); err != nil {
return err
}
}
return nil
}
type cacheKeyIterator struct {
cache *Cache
size int
k string
order []string
values []Value
block []byte
minTime, maxTime time.Time
err error
}
func NewCacheKeyIterator(cache *Cache, size int) KeyIterator {
keys := cache.Keys()
return &cacheKeyIterator{
size: size,
cache: cache,
order: keys,
}
}
func (c *cacheKeyIterator) Next() bool {
if len(c.values) > c.size {
c.values = c.values[c.size:]
return true
}
if len(c.order) == 0 {
return false
}
c.k = c.order[0]
c.order = c.order[1:]
c.values = c.cache.values(c.k)
return len(c.values) > 0
}
func (c *cacheKeyIterator) Read() (string, time.Time, time.Time, []byte, error) {
minTime, maxTime := c.values[0].Time(), c.values[len(c.values)-1].Time()
var b []byte
var err error
if len(c.values) > c.size {
maxTime = c.values[c.size-1].Time()
b, err = Values(c.values[:c.size]).Encode(nil)
} else {
b, err = Values(c.values).Encode(nil)
}
return c.k, minTime, maxTime, b, err
}
func (c *cacheKeyIterator) Close() error {
return nil
}
type tsmGenerations []*tsmGeneration
func (a tsmGenerations) Len() int { return len(a) }
func (a tsmGenerations) Less(i, j int) bool { return a[i].id < a[j].id }
func (a tsmGenerations) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a tsmGenerations) hasTombstones() bool {
for _, g := range a {
if g.hasTombstones() {
return true
}
}
return false
}