The official implementation of SOGDet.
Qiu Zhou, Jinming Cao, Hanchao Leng, Yifang Yin, Kun Yu, Roger Zimmermann, AAAI 2024.
We propose a novel approach called SOGDet (Semantic-Occupancy Guided Multi-view 3D Object Detection), that leverages a 3D semantic-occupancy branch to improve the accuracy of 3D object detection. In particular, the physical context modeled by semantic occupancy helps the detector to perceive the scenes in a more holistic view. Our SOGDet is flexible to use and can be seamlessly integrated with most existing BEV-based methods.
Method | mAP | NDS | Model |
---|---|---|---|
SOGDet-BO-r50 | 38.2 | 50.2 | |
SOGDet-SE-r50* | 38.8 | 50.6 | |
SOGDet-BO-r101 | 43.9 | 55.4 | |
SOGDet-SE-r101* | 45.8 | 56.6 |
- Memory is tested in the training process with batch 1 and without using torch.checkpoint.
Please see install.md.
Please see install.md.
For training process, we use config file in $SOGDet/configs/sogdet
to define model, dataset and hyber parameters.
Run the following command to start a training process.
For example:
tools/dist_train.sh configs/sogdet-se-r50.py 8
For testing bbox scores, run the following command:
tools/dist_test.sh configs/sogdet-se-r50.py sogdet-se-r50.pth 8 --eval bbox
For testing bbox & mIOU scores, run the following command:
tools/dist_test_plus.sh configs/sogdet-se-r50.py sogdet-se-r50.pth 8 --eval bbox
For visualizing results, we should add parameter '--show-dir xxx' to save results during running test commands. For example:
tools/dist_test.sh configs/sogdet-se-r50.py sogdet-se-r50.pth 8 --eval bbox --show-dir work_dirs/sogdet-se-r50/ # for OD results
python tools/test_plus.py configs/sogdet-se-r50.py sogdet-se-r50.pth --eval bbox --show-dir work_dirs/sogdet-se-r50/ # for OCC results (no multi-process)
Run the following command to visualize OD & OCC visualization results.
python tools/vis_pred_gt_od_hybrid.py --bbox-path work_dirs/sogdet-se-r50/ --voxel-path work_dirs/sogdet-se-r50/ --save-path work_dirs/sogdet-se-r50/visual_pred/
python tools/vis_pred_gt_occ.py --voxel-path work_dirs/sogdet-se-r50/ --save-path work_dirs/sogdet-se-r50/
If you find this repo useful, please consider citing:
@inproceedings{zhou2024sogdet,
title={SOGDet: Semantic-occupancy guided multi-view 3D object detection},
author={Zhou, Qiu and Cao, Jinming and Leng, Hanchao and Yin, Yifang and Kun, Yu and Zimmermann, Roger},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={38},
number={7},
pages={7668--7676},
year={2024}
}
This project is not possible without multiple great open-sourced code bases. We list some notable examples below.