Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduce std.mem.readPackedInt and improve bitcasting of packed memory layouts #13221

Merged
merged 5 commits into from
Oct 29, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
161 changes: 69 additions & 92 deletions lib/std/math/big/int.zig
Original file line number Diff line number Diff line change
Expand Up @@ -1762,16 +1762,32 @@ pub const Mutable = struct {
}

/// Read the value of `x` from `buffer`
/// Asserts that `buffer`, `abi_size`, and `bit_count` are large enough to store the value.
/// Asserts that `buffer` is large enough to contain a value of bit-size `bit_count`.
///
/// The contents of `buffer` are interpreted as if they were the contents of
/// @ptrCast(*[abi_size]const u8, &x). Byte ordering is determined by `endian`
/// @ptrCast(*[buffer.len]const u8, &x). Byte ordering is determined by `endian`
/// and any required padding bits are expected on the MSB end.
pub fn readTwosComplement(
x: *Mutable,
buffer: []const u8,
bit_count: usize,
abi_size: usize,
endian: Endian,
signedness: Signedness,
) void {
return readPackedTwosComplement(x, buffer, 0, bit_count, endian, signedness);
}

/// Read the value of `x` from a packed memory `buffer`.
/// Asserts that `buffer` is large enough to contain a value of bit-size `bit_count`
/// at offset `bit_offset`.
///
/// This is equivalent to loading the value of an integer with `bit_count` bits as
/// if it were a field in packed memory at the provided bit offset.
pub fn readPackedTwosComplement(
x: *Mutable,
bytes: []const u8,
bit_offset: usize,
bit_count: usize,
endian: Endian,
signedness: Signedness,
) void {
Expand All @@ -1782,75 +1798,54 @@ pub const Mutable = struct {
return;
}

// byte_count is our total read size: it cannot exceed abi_size,
// but may be less as long as it includes the required bits
const limb_count = calcTwosCompLimbCount(bit_count);
const byte_count = std.math.min(abi_size, @sizeOf(Limb) * limb_count);
assert(8 * byte_count >= bit_count);

// Check whether the input is negative
var positive = true;
if (signedness == .signed) {
const total_bits = bit_offset + bit_count;
var last_byte = switch (endian) {
.Little => ((bit_count + 7) / 8) - 1,
.Big => abi_size - ((bit_count + 7) / 8),
.Little => ((total_bits + 7) / 8) - 1,
.Big => bytes.len - ((total_bits + 7) / 8),
};

const sign_bit = @as(u8, 1) << @intCast(u3, (bit_count - 1) % 8);
positive = ((buffer[last_byte] & sign_bit) == 0);
const sign_bit = @as(u8, 1) << @intCast(u3, (total_bits - 1) % 8);
positive = ((bytes[last_byte] & sign_bit) == 0);
}

// Copy all complete limbs
var carry: u1 = if (positive) 0 else 1;
var carry: u1 = 1;
var limb_index: usize = 0;
var bit_index: usize = 0;
while (limb_index < bit_count / @bitSizeOf(Limb)) : (limb_index += 1) {
var buf_index = switch (endian) {
.Little => @sizeOf(Limb) * limb_index,
.Big => abi_size - (limb_index + 1) * @sizeOf(Limb),
};

const limb_buf = @ptrCast(*const [@sizeOf(Limb)]u8, buffer[buf_index..]);
var limb = mem.readInt(Limb, limb_buf, endian);
// Read one Limb of bits
var limb = mem.readPackedInt(Limb, bytes, bit_index + bit_offset, endian);
bit_index += @bitSizeOf(Limb);

// 2's complement (bitwise not, then add carry bit)
if (!positive) carry = @boolToInt(@addWithOverflow(Limb, ~limb, carry, &limb));
x.limbs[limb_index] = limb;
}

// Copy the remaining N bytes (N <= @sizeOf(Limb))
var bytes_read = limb_index * @sizeOf(Limb);
if (bytes_read != byte_count) {
var limb: Limb = 0;

while (bytes_read != byte_count) {
const read_size = std.math.floorPowerOfTwo(usize, byte_count - bytes_read);
var int_buffer = switch (endian) {
.Little => buffer[bytes_read..],
.Big => buffer[(abi_size - bytes_read - read_size)..],
};
limb |= @intCast(Limb, switch (read_size) {
1 => mem.readInt(u8, int_buffer[0..1], endian),
2 => mem.readInt(u16, int_buffer[0..2], endian),
4 => mem.readInt(u32, int_buffer[0..4], endian),
8 => mem.readInt(u64, int_buffer[0..8], endian),
16 => mem.readInt(u128, int_buffer[0..16], endian),
else => unreachable,
}) << @intCast(Log2Limb, 8 * (bytes_read % @sizeOf(Limb)));
bytes_read += read_size;
}
// Copy the remaining bits
if (bit_count != bit_index) {
// Read all remaining bits
var limb = switch (signedness) {
.unsigned => mem.readVarPackedInt(Limb, bytes, bit_index + bit_offset, bit_count - bit_index, endian, .unsigned),
.signed => b: {
const SLimb = std.meta.Int(.signed, @bitSizeOf(Limb));
const limb = mem.readVarPackedInt(SLimb, bytes, bit_index + bit_offset, bit_count - bit_index, endian, .signed);
break :b @bitCast(Limb, limb);
},
};

// 2's complement (bitwise not, then add carry bit)
if (!positive) _ = @addWithOverflow(Limb, ~limb, carry, &limb);

// Mask off any unused bits
const valid_bits = @intCast(Log2Limb, bit_count % @bitSizeOf(Limb));
const mask = (@as(Limb, 1) << valid_bits) -% 1; // 0b0..01..1 with (valid_bits_in_limb) trailing ones
limb &= mask;
if (!positive) assert(!@addWithOverflow(Limb, ~limb, carry, &limb));
x.limbs[limb_index] = limb;

x.limbs[limb_count - 1] = limb;
limb_index += 1;
}

x.positive = positive;
x.len = limb_count;
x.len = limb_index;
x.normalize(x.len);
}

Expand Down Expand Up @@ -2212,66 +2207,48 @@ pub const Const = struct {
}

/// Write the value of `x` into `buffer`
/// Asserts that `buffer`, `abi_size`, and `bit_count` are large enough to store the value.
/// Asserts that `buffer` is large enough to store the value.
///
/// `buffer` is filled so that its contents match what would be observed via
/// @ptrCast(*[abi_size]const u8, &x). Byte ordering is determined by `endian`,
/// @ptrCast(*[buffer.len]const u8, &x). Byte ordering is determined by `endian`,
/// and any required padding bits are added on the MSB end.
pub fn writeTwosComplement(x: Const, buffer: []u8, bit_count: usize, abi_size: usize, endian: Endian) void {
pub fn writeTwosComplement(x: Const, buffer: []u8, endian: Endian) void {
return writePackedTwosComplement(x, buffer, 0, 8 * buffer.len, endian);
}

// byte_count is our total write size
const byte_count = abi_size;
assert(8 * byte_count >= bit_count);
assert(buffer.len >= byte_count);
/// Write the value of `x` to a packed memory `buffer`.
/// Asserts that `buffer` is large enough to contain a value of bit-size `bit_count`
/// at offset `bit_offset`.
///
/// This is equivalent to storing the value of an integer with `bit_count` bits as
/// if it were a field in packed memory at the provided bit offset.
pub fn writePackedTwosComplement(x: Const, bytes: []u8, bit_offset: usize, bit_count: usize, endian: Endian) void {
assert(x.fitsInTwosComp(if (x.positive) .unsigned else .signed, bit_count));

// Copy all complete limbs
var carry: u1 = if (x.positive) 0 else 1;
var carry: u1 = 1;
var limb_index: usize = 0;
while (limb_index < byte_count / @sizeOf(Limb)) : (limb_index += 1) {
var buf_index = switch (endian) {
.Little => @sizeOf(Limb) * limb_index,
.Big => abi_size - (limb_index + 1) * @sizeOf(Limb),
};

var bit_index: usize = 0;
while (limb_index < bit_count / @bitSizeOf(Limb)) : (limb_index += 1) {
var limb: Limb = if (limb_index < x.limbs.len) x.limbs[limb_index] else 0;

// 2's complement (bitwise not, then add carry bit)
if (!x.positive) carry = @boolToInt(@addWithOverflow(Limb, ~limb, carry, &limb));

var limb_buf = @ptrCast(*[@sizeOf(Limb)]u8, buffer[buf_index..]);
mem.writeInt(Limb, limb_buf, limb, endian);
// Write one Limb of bits
mem.writePackedInt(Limb, bytes, bit_index + bit_offset, limb, endian);
bit_index += @bitSizeOf(Limb);
}

// Copy the remaining N bytes (N < @sizeOf(Limb))
var bytes_written = limb_index * @sizeOf(Limb);
if (bytes_written != byte_count) {
// Copy the remaining bits
if (bit_count != bit_index) {
var limb: Limb = if (limb_index < x.limbs.len) x.limbs[limb_index] else 0;

// 2's complement (bitwise not, then add carry bit)
if (!x.positive) _ = @addWithOverflow(Limb, ~limb, carry, &limb);

while (bytes_written != byte_count) {
const write_size = std.math.floorPowerOfTwo(usize, byte_count - bytes_written);
var int_buffer = switch (endian) {
.Little => buffer[bytes_written..],
.Big => buffer[(abi_size - bytes_written - write_size)..],
};

if (write_size == 1) {
mem.writeInt(u8, int_buffer[0..1], @truncate(u8, limb), endian);
} else if (@sizeOf(Limb) >= 2 and write_size == 2) {
mem.writeInt(u16, int_buffer[0..2], @truncate(u16, limb), endian);
} else if (@sizeOf(Limb) >= 4 and write_size == 4) {
mem.writeInt(u32, int_buffer[0..4], @truncate(u32, limb), endian);
} else if (@sizeOf(Limb) >= 8 and write_size == 8) {
mem.writeInt(u64, int_buffer[0..8], @truncate(u64, limb), endian);
} else if (@sizeOf(Limb) >= 16 and write_size == 16) {
mem.writeInt(u128, int_buffer[0..16], @truncate(u128, limb), endian);
} else if (@sizeOf(Limb) >= 32) {
@compileError("@sizeOf(Limb) exceeded supported range");
} else unreachable;
limb >>= @intCast(Log2Limb, 8 * write_size);
bytes_written += write_size;
}
// Write all remaining bits
mem.writeVarPackedInt(bytes, bit_index + bit_offset, bit_count - bit_index, limb, endian);
}
}

Expand Down
Loading