Skip to content

Point-SAM: This is the official repository of "Point-SAM: Promptable 3D Segmentation Model for Point Clouds". We provide codes for running our demo and links to download checkpoints.

License

Notifications You must be signed in to change notification settings

zyc00/Point-SAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Point-SAM: Promptable 3D Segmentation Model for Point Clouds

Yuchen Zhou * 1, Jiayuan Gu * 1, Tung Yen Chiang1, Fanbo Xiang1, Hao Su1,2

UC San Diego, Hillbot

* Equal Contribution

arXiv Project Page Demo

Mesh Segmentation Demo

Our model support mesh segmentation by sampling points from the mesh and propagate segmentation labels back to the mesh. We deployed a huggingface demo at 🤗demo🤗. We also provide local mesh segmentation demo at https://github.com/zyc00/point-sam-demo. Some meshes in glb format are provided in examples.

Installation

The code requires python>=3.8, timm>=0.9.0, pytorch>=2.1.0, torchvision>=0.16.0. Please follow the offcial guide to install Pytorch, timm and TorchVision dependencies. We also recommend compiling third partiy modules with g++=9.3.0.

Install third party modules.

# Install g++=9.3.0 in conda environment by
conda install gxx_linux-64=9.3.0
# Install torkit3d
git submodule update --init third_party/torkit3d && 
FORCE_CUDA=1 pip install third_party/torkit3d &&
# Install apex
git submodule update --init third_party/apex &&
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" third_party/apex

Install Point-SAM from GitHub

pip install git+https://github.com/zyc00/Point-SAM.git

or clone the repository and install with

git clone https://github.com/zyc00/Point-SAM.git &&
cd Point-SAM && pip install . && cd ..

Getting Start

We provide pretrained checkpoint for Point-SAM with ViT-L on HuggingFace. After downloading the checkpoint, you can inference with the following codes. For different numbers of points, we allow custom group_number and group_size. The default setting is group_number=512 and group_size=64, and we suggest setting group_number=2048 and group_size=256 while the number of points > 100k.

from point_sam import build_point_sam
model = build_point_sam(ckpt_path, group_number, group_size)
model.set_pointcloud(coords, colors)
model.predict_masks(prompt_coords, prompt_labels)

Demo Usage

We only support meshes in GLB format. If your mesh is not in GLB format, please convert it first. For our demo, you can simply drag a mesh into the browser, and the backend will encode the point cloud. Once encoding is complete, the camera view will adjust for optimal viewing. Then, you can interact with the demo by clicking on the mesh surface.

The performance of the Hugging Face demo is limited by data transfer and a shared GPU backend. To experience better performance, try running our local demo on your device by executing python app.py.

Point Cloud Segmentation Demo

We provide a local demo for Point-SAM in demo. Some point cloud examples are provided in demo/static/models. If you want to try our demo, first install backend dependencies.

pip install flask flask-cors

Run the backend with following commands, you can change --host and --port to your IP address.

python demo/app.py --host localhost --port 5000 --pointcloud scene.ply --checkpoint ./pretrained/model.safetensors
# python demo/app.py --host localhost --port 5000 --pointcloud rhino.ply --checkpoint ./pretrained/model.safetensors
# python demo/app.py --host localhost --port 5000 --pointcloud tiko_10000_points.ply --checkpoint ./pretrained/model.safetensors
# python demo/app.py --host localhost --port 5000 --pointcloud tiko_50000_points.ply --checkpoint ./pretrained/model.safetensors

Acknowledgement

We refer to SAM, Uni3D and OpenShape while developing Point-SAM. Thanks for these awesome works. We also thank @YouJiacheng for providing constructive suggestions for the data engine design.

Citation

@misc{zhou2024pointsampromptable3dsegmentation,
      title={Point-SAM: Promptable 3D Segmentation Model for Point Clouds}, 
      author={Yuchen Zhou and Jiayuan Gu and Tung Yen Chiang and Fanbo Xiang and Hao Su},
      year={2024},
      eprint={2406.17741},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
      url={https://arxiv.org/abs/2406.17741}, 
}

About

Point-SAM: This is the official repository of "Point-SAM: Promptable 3D Segmentation Model for Point Clouds". We provide codes for running our demo and links to download checkpoints.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages