Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

NotImplementedError: There were no tensor arguments to this function #31

Closed
Entretoize opened this issue Jan 11, 2022 · 6 comments
Closed

Comments

@Entretoize
Copy link

I receive an error I don't understand when trying to run the inference script:

(py36pt1.6) H:\git\VideoDebluring2\ESTRNN>python inference.py
Traceback (most recent call last):
  File "inference.py", line 58, in <module>
    output_seq = model([input_seq, ])
  File "H:\miniconda\envs\py36pt1.6\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "H:\miniconda\envs\py36pt1.6\lib\site-packages\torch\nn\parallel\data_parallel.py", line 166, in forward
    return self.module(*inputs[0], **kwargs[0])
  File "H:\miniconda\envs\py36pt1.6\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "H:\git\VideoDebluring2\ESTRNN\model\model.py", line 15, in forward
    outputs = self.module.feed(self.model, iter_samples)
  File "H:\git\VideoDebluring2\ESTRNN\model\ESTRNN.py", line 233, in feed
    outputs = model(inputs)
  File "H:\miniconda\envs\py36pt1.6\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "H:\git\VideoDebluring2\ESTRNN\model\ESTRNN.py", line 209, in forward
    return torch.cat(outputs, dim=1)
NotImplementedError: There were no tensor arguments to this function (e.g., you passed an empty list of Tensors), but no fallback function is registered for schema aten::_cat.  This usually means that this function requires a non-empty list of Tensors, or that you (the operator writer) forgot to register a fallback function.  Available functions are [CPU, CUDA, QuantizedCPU, BackendSelect, Python, Named, Conjugate, Negative, ADInplaceOrView, AutogradOther, AutogradCPU, AutogradCUDA, AutogradXLA, AutogradLazy, AutogradXPU, AutogradMLC, AutogradHPU, AutogradNestedTensor, AutogradPrivateUse1, AutogradPrivateUse2, AutogradPrivateUse3, Tracer, UNKNOWN_TENSOR_TYPE_ID, Autocast, Batched, VmapMode].

CPU: registered at aten\src\ATen\RegisterCPU.cpp:18433 [kernel]
CUDA: registered at aten\src\ATen\RegisterCUDA.cpp:26496 [kernel]
QuantizedCPU: registered at aten\src\ATen\RegisterQuantizedCPU.cpp:1068 [kernel]
BackendSelect: fallthrough registered at ..\aten\src\ATen\core\BackendSelectFallbackKernel.cpp:3 [backend fallback]
Python: registered at ..\aten\src\ATen\core\PythonFallbackKernel.cpp:47 [backend fallback]
Named: registered at ..\aten\src\ATen\core\NamedRegistrations.cpp:7 [backend fallback]
Conjugate: registered at ..\aten\src\ATen\ConjugateFallback.cpp:18 [backend fallback]
Negative: registered at ..\aten\src\ATen\native\NegateFallback.cpp:18 [backend fallback]
ADInplaceOrView: fallthrough registered at ..\aten\src\ATen\core\VariableFallbackKernel.cpp:64 [backend fallback]
AutogradOther: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradCPU: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradCUDA: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradXLA: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradLazy: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradXPU: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradMLC: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradHPU: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradNestedTensor: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradPrivateUse1: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradPrivateUse2: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
AutogradPrivateUse3: registered at ..\torch\csrc\autograd\generated\VariableType_3.cpp:10141 [autograd kernel]
Tracer: registered at ..\torch\csrc\autograd\generated\TraceType_3.cpp:11560 [kernel]
UNKNOWN_TENSOR_TYPE_ID: fallthrough registered at ..\aten\src\ATen\autocast_mode.cpp:466 [backend fallback]
Autocast: fallthrough registered at ..\aten\src\ATen\autocast_mode.cpp:305 [backend fallback]
Batched: registered at ..\aten\src\ATen\BatchingRegistrations.cpp:1016 [backend fallback]
VmapMode: fallthrough registered at ..\aten\src\ATen\VmapModeRegistrations.cpp:33 [backend fallback]

Can someone help ?

@zzh-tech
Copy link
Owner

Is this your command?

python inference.py

@Entretoize
Copy link
Author

Entretoize commented Jan 11, 2022

Yes but I modified it not to have to write parameters each time:

if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('--src', type=str, default="jardin", help="the path of input video or video dir")
    parser.add_argument('--ckpt', type=str, default="checkpoints/ESTRNN_C80B15_BSD_2ms16ms.tar", help="the path of checkpoint of pretrained model")
    parser.add_argument('--dst', type=str, default="result", help="where to store the results")
    args = parser.parse_args()

@zzh-tech
Copy link
Owner

What is the image file format in this dir "jardin"?
If you don't mind, you can share the contents of this folder with me.

@Entretoize
Copy link
Author

After your message I tried with the BSD data and it doesn't worked, then as I already successfully tried your script I redownloaded all py files and it works, then sorry I think I had modified something somewhere that corrupted the code...

Maybe I should open a new issue, tell me, but I have a small issue, the script works great with blurred images but when there's no blur at all the original image is sharpen than the result, is there a way to have a threshold to prevent adding blur on sharp images or on sharp portion of an image ?
(sample images : https://linkall.pro/ESTRNN/000001.png and 000002.png...)

@zzh-tech
Copy link
Owner

Maybe you can design some solutions with blur detection.

@Entretoize
Copy link
Author

Yes, I'll compare original and modifed and keep the best after computation.
Thanks

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants