You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
X:\python\DF\srntt\SRNTT-master>python main.py --is_train True --save_dir SRNTT --input_dir data/train/CUFED/input --ref_dir data/train/CUFED/ref --map_dir data/train/CUFED/map_321 --batch_size 9 --num_epochs 100 --input_size 32
12443 12443 12443
2019-03-20 16:01:54,106 root INFO Building graph ...
Traceback (most recent call last):
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1628, in _create_c_op
c_op = c_api.TF_FinishOperation(op_desc)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimension 1 in both shapes must be equal, but are 32 and 40. Shapes are [9,32,32] and [9,40,40]. for 'texture_transfer/concatenation1' (op: 'ConcatV2') with input shapes: [9,32,32,64], [9,40,40,256], [] and with computed input tensors: input[2] = <-1>.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "X:\python\DF\srntt\SRNTT-master\SRNTT\tensorlayer\layers.py", line 5172, in __init__
self.outputs = tf.concat(self.inputs, concat_dim, name=name)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1124, in concat
return gen_array_ops.concat_v2(values=values, axis=axis, name=name)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 1202, in concat_v2
"ConcatV2", values=values, axis=axis, name=name)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\util\deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 3274, in create_op
op_def=op_def)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1792, in __init__
control_input_ops)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1631, in _create_c_op
raise ValueError(str(e))
ValueError: Dimension 1 in both shapes must be equal, but are 32 and 40. Shapes are [9,32,32] and [9,40,40]. for 'texture_transfer/concatenation1' (op: 'ConcatV2') with input shapes: [9,32,32,64], [9,40,40,256], [] and with computed input tensors: input[2] = <-1>.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1628, in _create_c_op
c_op = c_api.TF_FinishOperation(op_desc)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimension 1 in both shapes must be equal, but are 32 and 40. Shapes are [9,32,32,64] and [9,40,40,256].
From merging shape 0 with other shapes. for 'texture_transfer/concatenation1_1/concat_dim' (op: 'Pack') with input shapes: [9,32,32,64], [9,40,40,256].
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "main.py", line 95, in <module>
use_lower_layers_in_per_loss=args.use_lower_layers_in_per_loss
File "X:\python\DF\srntt\SRNTT-master\SRNTT\model.py", line 359, in train
self.net_upscale, self.net_srntt = self.model(self.input, self.maps)
File "X:\python\DF\srntt\SRNTT-master\SRNTT\model.py", line 131, in model
net = ConcatLayer(layer=[map_in, map_ref], concat_dim=-1, name='concatenation1')
File "X:\python\DF\srntt\SRNTT-master\SRNTT\tensorlayer\layers.py", line 5174, in __init__
self.outputs = tf.concat(concat_dim, self.inputs, name=name)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1121, in concat
dtype=dtypes.int32).get_shape().assert_is_compatible_with(
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1050, in convert_to_tensor
as_ref=False)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1146, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\array_ops.py", line 971, in _autopacking_conversion_function
return _autopacking_helper(v, dtype, name or "packed")
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\array_ops.py", line 923, in _autopacking_helper
return gen_array_ops.pack(elems_as_tensors, name=scope)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 5857, in pack
"Pack", values=values, axis=axis, name=name)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\util\deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 3274, in create_op
op_def=op_def)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1792, in __init__
control_input_ops)
File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1631, in _create_c_op
raise ValueError(str(e))
ValueError: Dimension 1 in both shapes must be equal, but are 32 and 40. Shapes are [9,32,32,64] and [9,40,40,256].
From merging shape 0 with other shapes. for 'texture_transfer/concatenation1_1/concat_dim' (op: 'Pack') with input shapes: [9,32,32,64], [9,40,40,256].
How should I be running training in this case where I'm using 128x128 images? Or should I regenerate the training data as 160x160 images same as the CUFED dataset?
The text was updated successfully, but these errors were encountered:
It seems that you are still using CUFED dataset for training, but the feature maps are generated from your own dataset, where the input size is different from that of CUFED. Please use your own dataset for training as well.
Have you completed all the relevant experiments? I want to ask you some experimental details in private. Is it convenient to leave your contact information?
I am trying to train a model using around 12,000 128x128 ref/input images (extracted from 8 border 128x128 regions of 512x512 images):
ref example:
corresponding input example:
My aim is to deblur images like this:
So they are closer to this:
I have ran
offline_patchMatch_textureSwap.py
on my data which generated 329 GB of feature maps, then used this command to try to run training:python main.py --is_train True --save_dir SRNTT --input_dir data/train/CUFED/input --ref_dir data/train/CUFED/ref --map_dir data/train/CUFED/map_321 --batch_size 9 --num_epochs 100 --input_size 32
This results in the following:
How should I be running training in this case where I'm using 128x128 images? Or should I regenerate the training data as 160x160 images same as the CUFED dataset?
The text was updated successfully, but these errors were encountered: